mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00

* fsdp+qlora related changes * fixes * Update quantization_config.py * support fsdp+qlora and dsz3+qlora * Update quantization_config.py * Update modeling_utils.py * Update modeling_utils.py * Update modeling_utils.py * Update modeling_utils.py * Update modeling_utils.py * Update modeling_utils.py * handle fsdp+qlora and dsz3+qlora correctly while model loading * fix param count * quality * fsdp related changes * fsdp changes only when using LoRA/QLoRA * add accelerate version check * refactor, update min accelerate version and add tests 1. Update minimum accelerate version to 0.26.0 2. Clean the trainer wrt accelerate version checks 3. FSDP refactor and test for fsdp config 4. use `itemsize` instead of `dtype2bytes` dict * fix test * Address comments Co-Authored-By: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> * fix the conditional flag * fix conditional flag * address comments Co-Authored-By: Zach Mueller <7831895+muellerzr@users.noreply.github.com> --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Zach Mueller <7831895+muellerzr@users.noreply.github.com>
314 lines
13 KiB
Python
314 lines
13 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import itertools
|
|
import os
|
|
import unittest
|
|
from copy import deepcopy
|
|
from functools import partial
|
|
|
|
from parameterized import parameterized
|
|
|
|
import tests.trainer.test_trainer
|
|
from tests.trainer.test_trainer import TrainerIntegrationCommon # noqa
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import (
|
|
TestCasePlus,
|
|
backend_device_count,
|
|
execute_subprocess_async,
|
|
mockenv_context,
|
|
require_accelerate,
|
|
require_fsdp,
|
|
require_torch_accelerator,
|
|
require_torch_multi_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.trainer_callback import TrainerState
|
|
from transformers.trainer_utils import FSDPOption, set_seed
|
|
from transformers.utils import is_accelerate_available, is_torch_bf16_available_on_device
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_1
|
|
from transformers.trainer import FSDP_MODEL_NAME
|
|
else:
|
|
is_torch_greater_or_equal_than_2_1 = False
|
|
|
|
# default torch.distributed port
|
|
DEFAULT_MASTER_PORT = "10999"
|
|
dtypes = ["fp16"]
|
|
if is_torch_bf16_available_on_device(torch_device):
|
|
dtypes += ["bf16"]
|
|
sharding_strategies = ["full_shard", "shard_grad_op"]
|
|
state_dict_types = ["FULL_STATE_DICT", "SHARDED_STATE_DICT"]
|
|
set_seed(42)
|
|
params = list(itertools.product(sharding_strategies, dtypes))
|
|
|
|
|
|
def get_master_port(real_launcher=False):
|
|
"""
|
|
When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
|
|
the issue is that once the port is tied it can't be used anywhere else outside of this process,
|
|
since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
|
|
able to run both emulated launcher and normal launcher tests we need 2 distinct ports.
|
|
|
|
This function will give the right port in the right context. For real launcher it'll give the
|
|
base port, for emulated launcher it'll give the base port + 1. In both cases a string is
|
|
returned.
|
|
|
|
Args:
|
|
`real_launcher`: whether a real launcher is going to be used, or the emulated one
|
|
|
|
"""
|
|
|
|
master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
|
|
if not real_launcher:
|
|
master_port_base = str(int(master_port_base) + 1)
|
|
return master_port_base
|
|
|
|
|
|
if is_torch_available():
|
|
from tests.trainer.test_trainer import ( # noqa
|
|
RegressionModelConfig,
|
|
RegressionPreTrainedModel,
|
|
)
|
|
|
|
# hack to restore original logging level pre #21700
|
|
get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")
|
|
|
|
require_fsdp_version = require_fsdp
|
|
if is_accelerate_available():
|
|
from accelerate.utils.constants import (
|
|
FSDP_PYTORCH_VERSION,
|
|
FSDP_SHARDING_STRATEGY,
|
|
)
|
|
|
|
require_fsdp_version = partial(require_fsdp, min_version=FSDP_PYTORCH_VERSION)
|
|
|
|
|
|
def get_launcher(distributed=False, use_accelerate=False):
|
|
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
|
|
# - it won't be able to handle that
|
|
# 2. for now testing with just 2 gpus max (since some quality tests may give different
|
|
# results with mode gpus because we use very little data)
|
|
num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
|
|
master_port = get_master_port(real_launcher=True)
|
|
if use_accelerate:
|
|
return f"""accelerate launch
|
|
--num_processes {num_gpus}
|
|
--main_process_port {master_port}
|
|
--use_fsdp
|
|
--fsdp_auto_wrap_policy TRANSFORMER_BASED_WRAP
|
|
--fsdp_state_dict_type SHARDED_STATE_DICT
|
|
--fsdp_transformer_layer_cls_to_wrap BertLayer""".split()
|
|
return f"torchrun --nnodes 1 --nproc-per-node {num_gpus} --master-port {master_port}".split()
|
|
|
|
|
|
def _parameterized_custom_name_func(func, param_num, param):
|
|
# customize the test name generator function as we want both params to appear in the sub-test
|
|
# name, as by default it shows only the first param
|
|
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
|
|
return f"{func.__name__}_{param_based_name}"
|
|
|
|
|
|
@require_accelerate
|
|
@require_torch_accelerator
|
|
@require_fsdp_version
|
|
class TrainerIntegrationFSDP(TestCasePlus, TrainerIntegrationCommon):
|
|
def setUp(self):
|
|
super().setUp()
|
|
master_port = get_master_port(real_launcher=False)
|
|
self.dist_env_1_gpu = {
|
|
"MASTER_ADDR": "localhost",
|
|
"MASTER_PORT": master_port,
|
|
"RANK": "0",
|
|
"LOCAL_RANK": "0",
|
|
"WORLD_SIZE": "1",
|
|
}
|
|
|
|
self.fsdp_config = {
|
|
"backward_prefetch": "backward_pre",
|
|
"forward_prefetch": "False",
|
|
"limit_all_gathers": "False",
|
|
"use_orig_params": "True",
|
|
"sync_module_states": "True",
|
|
"activation_checkpointing": "False",
|
|
"min_num_params": 1,
|
|
}
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
|
|
@parameterized.expand(params, name_func=_parameterized_custom_name_func)
|
|
def test_fsdp_config(self, sharding_strategy, dtype):
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
kwargs = {
|
|
"output_dir": output_dir,
|
|
"train_len": 128,
|
|
"save_steps": 5,
|
|
"learning_rate": 0.1,
|
|
"fsdp": f"{sharding_strategy} offload auto_wrap",
|
|
"fsdp_config": self.fsdp_config,
|
|
}
|
|
kwargs[dtype] = True
|
|
with mockenv_context(**self.dist_env_1_gpu):
|
|
trainer = get_regression_trainer(**kwargs)
|
|
self.assertEqual(trainer.args.fsdp[0], sharding_strategy)
|
|
self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD)
|
|
self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP)
|
|
for k, v in trainer.args.fsdp_config.items():
|
|
self.assertEqual(v, self.fsdp_config[k])
|
|
self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true")
|
|
|
|
@parameterized.expand(params, name_func=_parameterized_custom_name_func)
|
|
def test_fsdp_config_transformers_auto_wrap(self, sharding_strategy, dtype):
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
fsdp_config = deepcopy(self.fsdp_config)
|
|
del fsdp_config["min_num_params"]
|
|
fsdp_config["transformer_layer_cls_to_wrap"] = "BertLayer"
|
|
kwargs = {
|
|
"output_dir": output_dir,
|
|
"train_len": 128,
|
|
"save_steps": 5,
|
|
"learning_rate": 0.1,
|
|
"fsdp": f"{sharding_strategy} offload auto_wrap",
|
|
"fsdp_config": fsdp_config,
|
|
}
|
|
kwargs[dtype] = True
|
|
prefix = "FSDP_"
|
|
with mockenv_context(**self.dist_env_1_gpu):
|
|
trainer = get_regression_trainer(**kwargs)
|
|
self.assertEqual(trainer.args.fsdp[0], sharding_strategy)
|
|
self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD)
|
|
self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP)
|
|
fsdp_sharding_strategy = (
|
|
str(FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1)
|
|
if is_accelerate_available("0.26.0")
|
|
else sharding_strategy.upper()
|
|
)
|
|
self.assertEqual(os.environ[f"{prefix}SHARDING_STRATEGY"], fsdp_sharding_strategy)
|
|
self.assertEqual(os.environ[f"{prefix}OFFLOAD_PARAMS"], "true")
|
|
self.assertEqual(os.environ[f"{prefix}AUTO_WRAP_POLICY"], "TRANSFORMER_BASED_WRAP")
|
|
self.assertEqual(
|
|
os.environ[f"{prefix}TRANSFORMER_CLS_TO_WRAP"], ",".join(fsdp_config["transformer_layer_cls_to_wrap"])
|
|
)
|
|
self.assertEqual(os.environ[f"{prefix}BACKWARD_PREFETCH"], fsdp_config["backward_prefetch"].upper())
|
|
self.assertEqual(os.environ[f"{prefix}FORWARD_PREFETCH"], fsdp_config["forward_prefetch"])
|
|
self.assertEqual(os.environ[f"{prefix}USE_ORIG_PARAMS"], fsdp_config["use_orig_params"])
|
|
self.assertEqual(os.environ[f"{prefix}SYNC_MODULE_STATES"], fsdp_config["sync_module_states"])
|
|
self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true")
|
|
|
|
@parameterized.expand(params, name_func=_parameterized_custom_name_func)
|
|
@require_torch_multi_accelerator
|
|
@slow
|
|
def test_basic_run(self, sharding_strategy, dtype):
|
|
launcher = get_launcher(distributed=True, use_accelerate=False)
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}"]
|
|
fsdp_args = ["--fsdp", f"{sharding_strategy} auto_wrap", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
|
|
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
|
|
cmd = launcher + script + args + fsdp_args
|
|
execute_subprocess_async(cmd, env=self.get_env())
|
|
|
|
@parameterized.expand(dtypes)
|
|
@require_torch_multi_accelerator
|
|
@slow
|
|
@unittest.skipIf(not is_torch_greater_or_equal_than_2_1, reason="This test on pytorch 2.0 takes 4 hours.")
|
|
def test_basic_run_with_cpu_offload(self, dtype):
|
|
launcher = get_launcher(distributed=True, use_accelerate=False)
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}", "--max_steps", "10"]
|
|
fsdp_args = ["--fsdp", "full_shard auto_wrap offload", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
|
|
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
|
|
cmd = launcher + script + args + fsdp_args
|
|
execute_subprocess_async(cmd, env=self.get_env())
|
|
|
|
@parameterized.expand(state_dict_types, name_func=_parameterized_custom_name_func)
|
|
@require_torch_multi_accelerator
|
|
@slow
|
|
def test_training_and_can_resume_normally(self, state_dict_type):
|
|
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
|
|
|
|
sharding_strategy = "full_shard"
|
|
use_accelerate = state_dict_type == "SHARDED_STATE_DICT"
|
|
launcher = get_launcher(True, use_accelerate=use_accelerate)
|
|
args = self.get_base_args(output_dir, 2, 25).split()
|
|
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
|
|
logs = self.run_cmd_and_get_logs(use_accelerate, sharding_strategy, launcher, script, args, output_dir)
|
|
|
|
# resume from ckpt
|
|
checkpoint = os.path.join(output_dir, "checkpoint-115")
|
|
resume_args = args + f"--resume_from_checkpoint {checkpoint}".split()
|
|
|
|
is_fsdp_ckpt = os.path.isdir(checkpoint) and (
|
|
# this checks the FSDP state dict when `SHARDED_STATE_DICT` is used
|
|
any(
|
|
FSDP_MODEL_NAME in folder_name
|
|
for folder_name in os.listdir(checkpoint)
|
|
if os.path.isdir(os.path.join(checkpoint, folder_name))
|
|
)
|
|
# this checks the FSDP state dict when `FULL_STATE_DICT` is used
|
|
or os.path.isfile(os.path.join(checkpoint, f"{FSDP_MODEL_NAME}.bin"))
|
|
)
|
|
self.assertTrue(is_fsdp_ckpt)
|
|
|
|
logs_resume = self.run_cmd_and_get_logs(
|
|
use_accelerate, sharding_strategy, launcher, script, resume_args, output_dir
|
|
)
|
|
|
|
for log, log1 in zip(logs, logs_resume):
|
|
if "learning_rate" in log:
|
|
self.assertAlmostEqual(log["learning_rate"], log1["learning_rate"], delta=1e-5)
|
|
|
|
def run_cmd_and_get_logs(self, use_accelerate, sharding_strategy, launcher, script, args, output_dir):
|
|
if not use_accelerate:
|
|
fsdp_args = [
|
|
"--fsdp",
|
|
f"{sharding_strategy} auto_wrap",
|
|
"--fsdp_transformer_layer_cls_to_wrap",
|
|
"BertLayer",
|
|
]
|
|
cmd = launcher + script + args + fsdp_args
|
|
else:
|
|
fsdp_config = f"""
|
|
--fsdp_sharding_strategy {FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1}
|
|
""".split()
|
|
cmd = launcher + fsdp_config + script + args
|
|
|
|
# keep for quick debug
|
|
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
|
|
execute_subprocess_async(cmd, env=self.get_env())
|
|
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
|
|
return logs
|
|
|
|
def get_base_args(self, output_dir, num_epochs, logging_steps):
|
|
return f"""
|
|
--model_name_or_path google-bert/bert-base-cased
|
|
--task_name mrpc
|
|
--output_dir {output_dir}
|
|
--overwrite_output_dir
|
|
--do_train
|
|
--max_seq_length 128
|
|
--per_device_train_batch_size 16
|
|
--learning_rate 5e-5
|
|
--num_train_epochs {num_epochs}
|
|
--lr_scheduler_type cosine
|
|
--logging_steps {logging_steps}
|
|
--save_strategy epoch
|
|
--do_eval
|
|
--evaluation_strategy epoch
|
|
--report_to none
|
|
"""
|