transformers/tests/tensor_parallel/test_tensor_parallel.py

165 lines
6.2 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import subprocess
import tempfile
import textwrap
# TORCH_LOGS=+dtensor CUDA_LAUNCH_BLOCKING=1 TORCH_USE_CUDA_DSA=1 PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
from transformers import is_torch_available
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaModel
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
)
if is_torch_available():
import torch
class TestTensorParallel(TestCasePlus):
def torchrun(self, script: str):
"""Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary."""
with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp:
tmp.write(script)
tmp.flush()
tmp.seek(0)
cmd = (
f"torchrun --nproc_per_node {torch.cuda.device_count()} --master_port {get_torch_dist_unique_port()} {tmp.name}"
).split()
# Note that the subprocess will be waited for here, and raise an error if not successful
try:
_ = subprocess.run(cmd, capture_output=True, env=self.get_env(), text=True, check=True)
except subprocess.CalledProcessError as e:
raise Exception(f"The following error was captured: {e.stderr}")
@require_torch_multi_gpu
def test_tp(self):
distributed_args = f"""--nproc_per_node={torch.cuda.device_count()}
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_tp.py
""".split()
output_dir = self.get_auto_remove_tmp_dir()
args = f"--output_dir {output_dir} --report_to none".split()
cmd = ["torchrun"] + distributed_args + args
print(cmd)
execute_subprocess_async(cmd, env=self.get_env())
# successful return here == success - any errors would have caused an error in the sub-call
@require_torch_multi_gpu
def test_loading_memory_consumption(self):
script_to_run = textwrap.dedent(
"""
import torch
import os
from transformers import AutoModelForCausalLM
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
device = torch.device(f"cuda:{rank}")
torch.distributed.init_process_group("nccl", device_id=device)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, tp_plan="auto")
torch.distributed.barrier()
# The expected model memory footprint. We add 1 as not all the modules are split (e.g. the embeddings)
expected_model_memory_per_device = (16 / world_size) + 1
overhead_factor = 1.2
# Check that we do not use more than the expected sharded size during initialization
if torch.cuda.max_memory_allocated(device) / 1024**3 > expected_model_memory_per_device * overhead_factor:
raise ValueError("Loading the model used more than the expected fraction of model size per device")
torch.distributed.barrier()
torch.distributed.destroy_process_group()
"""
)
self.torchrun(script_to_run)
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
# CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/tp/test_tp.py
# or
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
if not is_torch_available():
exit(0)
# Test settings
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
bs = 1
seqlen = 4096
# Get distributed settings
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
# Initialize distributed
device = torch.device(f"cuda:{rank}")
torch.distributed.init_process_group("nccl", device_id=device)
device_mesh = torch.distributed.init_device_mesh("cuda", (world_size,))
# Get model config
config = LlamaConfig.from_pretrained(model_id)
config.hidden_size = 2048
config.attention_bias = False
# Instantiate model
with device:
model = LlamaModel(config).to(dtype=torch.float16)
model.eval()
# Tensor Parallel
if world_size > 1:
model.tensor_parallel(device_mesh)
# Run model
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
# Test cuda graphing explicitly
with torch.cuda.device(device):
print("Cuda graphing")
with torch.no_grad():
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
# CUDA Graph setup
s = torch.cuda.Stream(device=device)
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for i in range(3):
out = model(inputs)
torch.cuda.current_stream().wait_stream(s)
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
out = model(inputs)
for _ in range(2):
g.replay()
s.synchronize()
assert out.last_hidden_state.shape == torch.Size([bs, seqlen, config.hidden_size])
# Test compile
with torch.no_grad():
out = model(inputs)
model.forward = torch.compile(model.forward, mode="reduce-overhead")
out = model(inputs)
out = model(inputs)