mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
165 lines
6.2 KiB
Python
165 lines
6.2 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import subprocess
|
|
import tempfile
|
|
import textwrap
|
|
|
|
# TORCH_LOGS=+dtensor CUDA_LAUNCH_BLOCKING=1 TORCH_USE_CUDA_DSA=1 PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
|
|
from transformers import is_torch_available
|
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
from transformers.models.llama.modeling_llama import LlamaModel
|
|
from transformers.testing_utils import (
|
|
TestCasePlus,
|
|
execute_subprocess_async,
|
|
get_torch_dist_unique_port,
|
|
require_torch_multi_gpu,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
class TestTensorParallel(TestCasePlus):
|
|
def torchrun(self, script: str):
|
|
"""Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary."""
|
|
with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp:
|
|
tmp.write(script)
|
|
tmp.flush()
|
|
tmp.seek(0)
|
|
cmd = (
|
|
f"torchrun --nproc_per_node {torch.cuda.device_count()} --master_port {get_torch_dist_unique_port()} {tmp.name}"
|
|
).split()
|
|
|
|
# Note that the subprocess will be waited for here, and raise an error if not successful
|
|
try:
|
|
_ = subprocess.run(cmd, capture_output=True, env=self.get_env(), text=True, check=True)
|
|
except subprocess.CalledProcessError as e:
|
|
raise Exception(f"The following error was captured: {e.stderr}")
|
|
|
|
@require_torch_multi_gpu
|
|
def test_tp(self):
|
|
distributed_args = f"""--nproc_per_node={torch.cuda.device_count()}
|
|
--master_port={get_torch_dist_unique_port()}
|
|
{self.test_file_dir}/test_tp.py
|
|
""".split()
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
args = f"--output_dir {output_dir} --report_to none".split()
|
|
cmd = ["torchrun"] + distributed_args + args
|
|
print(cmd)
|
|
execute_subprocess_async(cmd, env=self.get_env())
|
|
# successful return here == success - any errors would have caused an error in the sub-call
|
|
|
|
@require_torch_multi_gpu
|
|
def test_loading_memory_consumption(self):
|
|
script_to_run = textwrap.dedent(
|
|
"""
|
|
import torch
|
|
import os
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
|
|
rank = int(os.environ["RANK"])
|
|
world_size = int(os.environ["WORLD_SIZE"])
|
|
device = torch.device(f"cuda:{rank}")
|
|
torch.distributed.init_process_group("nccl", device_id=device)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, tp_plan="auto")
|
|
torch.distributed.barrier()
|
|
|
|
# The expected model memory footprint. We add 1 as not all the modules are split (e.g. the embeddings)
|
|
expected_model_memory_per_device = (16 / world_size) + 1
|
|
overhead_factor = 1.2
|
|
|
|
# Check that we do not use more than the expected sharded size during initialization
|
|
if torch.cuda.max_memory_allocated(device) / 1024**3 > expected_model_memory_per_device * overhead_factor:
|
|
raise ValueError("Loading the model used more than the expected fraction of model size per device")
|
|
|
|
torch.distributed.barrier()
|
|
torch.distributed.destroy_process_group()
|
|
"""
|
|
)
|
|
self.torchrun(script_to_run)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
|
|
# CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/tp/test_tp.py
|
|
# or
|
|
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
|
|
|
|
if not is_torch_available():
|
|
exit(0)
|
|
|
|
# Test settings
|
|
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
bs = 1
|
|
seqlen = 4096
|
|
# Get distributed settings
|
|
rank = int(os.environ["RANK"])
|
|
world_size = int(os.environ["WORLD_SIZE"])
|
|
|
|
# Initialize distributed
|
|
device = torch.device(f"cuda:{rank}")
|
|
torch.distributed.init_process_group("nccl", device_id=device)
|
|
device_mesh = torch.distributed.init_device_mesh("cuda", (world_size,))
|
|
|
|
# Get model config
|
|
config = LlamaConfig.from_pretrained(model_id)
|
|
config.hidden_size = 2048
|
|
config.attention_bias = False
|
|
# Instantiate model
|
|
with device:
|
|
model = LlamaModel(config).to(dtype=torch.float16)
|
|
|
|
model.eval()
|
|
# Tensor Parallel
|
|
if world_size > 1:
|
|
model.tensor_parallel(device_mesh)
|
|
# Run model
|
|
|
|
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
|
|
|
|
# Test cuda graphing explicitly
|
|
with torch.cuda.device(device):
|
|
print("Cuda graphing")
|
|
with torch.no_grad():
|
|
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
|
|
# CUDA Graph setup
|
|
s = torch.cuda.Stream(device=device)
|
|
s.wait_stream(torch.cuda.current_stream())
|
|
with torch.cuda.stream(s):
|
|
for i in range(3):
|
|
out = model(inputs)
|
|
torch.cuda.current_stream().wait_stream(s)
|
|
g = torch.cuda.CUDAGraph()
|
|
with torch.cuda.graph(g):
|
|
out = model(inputs)
|
|
|
|
for _ in range(2):
|
|
g.replay()
|
|
s.synchronize()
|
|
|
|
assert out.last_hidden_state.shape == torch.Size([bs, seqlen, config.hidden_size])
|
|
|
|
# Test compile
|
|
with torch.no_grad():
|
|
out = model(inputs)
|
|
model.forward = torch.compile(model.forward, mode="reduce-overhead")
|
|
out = model(inputs)
|
|
out = model(inputs)
|