mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-27 16:22:23 +06:00
161 lines
5.8 KiB
Python
161 lines
5.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2019 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import os
|
|
import sys
|
|
from io import open
|
|
import tempfile
|
|
import shutil
|
|
import unittest
|
|
|
|
if sys.version_info[0] == 2:
|
|
import cPickle as pickle
|
|
|
|
class TemporaryDirectory(object):
|
|
"""Context manager for tempfile.mkdtemp() so it's usable with "with" statement."""
|
|
def __enter__(self):
|
|
self.name = tempfile.mkdtemp()
|
|
return self.name
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
shutil.rmtree(self.name)
|
|
else:
|
|
import pickle
|
|
TemporaryDirectory = tempfile.TemporaryDirectory
|
|
unicode = str
|
|
|
|
|
|
class CommonTestCases:
|
|
|
|
class CommonTokenizerTester(unittest.TestCase):
|
|
|
|
tokenizer_class = None
|
|
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def get_tokenizer(self):
|
|
raise NotImplementedError
|
|
|
|
def get_input_output_texts(self):
|
|
raise NotImplementedError
|
|
|
|
def test_save_and_load_tokenizer(self):
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
before_tokens = tokenizer.encode(u"He is very happy, UNwant\u00E9d,running")
|
|
|
|
with TemporaryDirectory() as tmpdirname:
|
|
tokenizer.save_pretrained(tmpdirname)
|
|
tokenizer = tokenizer.from_pretrained(tmpdirname)
|
|
|
|
after_tokens = tokenizer.encode(u"He is very happy, UNwant\u00E9d,running")
|
|
self.assertListEqual(before_tokens, after_tokens)
|
|
|
|
def test_pickle_tokenizer(self):
|
|
tokenizer = self.get_tokenizer()
|
|
self.assertIsNotNone(tokenizer)
|
|
|
|
text = u"Munich and Berlin are nice cities"
|
|
subwords = tokenizer.tokenize(text)
|
|
|
|
with TemporaryDirectory() as tmpdirname:
|
|
|
|
filename = os.path.join(tmpdirname, u"tokenizer.bin")
|
|
pickle.dump(tokenizer, open(filename, "wb"))
|
|
|
|
tokenizer_new = pickle.load(open(filename, "rb"))
|
|
|
|
subwords_loaded = tokenizer_new.tokenize(text)
|
|
|
|
self.assertListEqual(subwords, subwords_loaded)
|
|
|
|
|
|
def test_add_tokens_tokenizer(self):
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
vocab_size = tokenizer.vocab_size
|
|
all_size = len(tokenizer)
|
|
|
|
self.assertNotEqual(vocab_size, 0)
|
|
self.assertEqual(vocab_size, all_size)
|
|
|
|
new_toks = ["aaaaabbbbbb", "cccccccccdddddddd"]
|
|
added_toks = tokenizer.add_tokens(new_toks)
|
|
vocab_size_2 = tokenizer.vocab_size
|
|
all_size_2 = len(tokenizer)
|
|
|
|
self.assertNotEqual(vocab_size_2, 0)
|
|
self.assertEqual(vocab_size, vocab_size_2)
|
|
self.assertEqual(added_toks, len(new_toks))
|
|
self.assertEqual(all_size_2, all_size + len(new_toks))
|
|
|
|
tokens = tokenizer.encode("aaaaabbbbbb low cccccccccdddddddd l")
|
|
self.assertGreaterEqual(len(tokens), 4)
|
|
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
|
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
|
|
|
new_toks_2 = {'eos_token': ">>>>|||<||<<|<<",
|
|
'pad_token': "<<<<<|||>|>>>>|>"}
|
|
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
|
|
vocab_size_3 = tokenizer.vocab_size
|
|
all_size_3 = len(tokenizer)
|
|
|
|
self.assertNotEqual(vocab_size_3, 0)
|
|
self.assertEqual(vocab_size, vocab_size_3)
|
|
self.assertEqual(added_toks_2, len(new_toks_2))
|
|
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
|
|
|
|
tokens = tokenizer.encode(">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l")
|
|
|
|
self.assertGreaterEqual(len(tokens), 6)
|
|
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
|
self.assertGreater(tokens[0], tokens[1])
|
|
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
|
self.assertGreater(tokens[-2], tokens[-3])
|
|
self.assertEqual(tokens[0], tokenizer.convert_tokens_to_ids(tokenizer.eos_token))
|
|
self.assertEqual(tokens[-2], tokenizer.convert_tokens_to_ids(tokenizer.pad_token))
|
|
|
|
|
|
def test_required_methods_tokenizer(self):
|
|
tokenizer = self.get_tokenizer()
|
|
input_text, output_text = self.get_input_output_texts()
|
|
|
|
tokens = tokenizer.tokenize(input_text)
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
ids_2 = tokenizer.encode(input_text)
|
|
self.assertListEqual(ids, ids_2)
|
|
|
|
tokens_2 = tokenizer.convert_ids_to_tokens(ids)
|
|
text_2 = tokenizer.decode(ids)
|
|
|
|
self.assertEqual(text_2, output_text)
|
|
|
|
self.assertNotEqual(len(tokens_2), 0)
|
|
self.assertIsInstance(text_2, (str, unicode))
|
|
|
|
|
|
def test_pretrained_model_lists(self):
|
|
weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
|
|
weights_lists_2 = []
|
|
for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
|
|
weights_lists_2.append(list(map_list.keys()))
|
|
|
|
for weights_list_2 in weights_lists_2:
|
|
self.assertListEqual(weights_list, weights_list_2)
|