mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-17 03:28:22 +06:00

* Make forward pass work * More improvements * Remove unused imports * Remove timm dependency * Improve loss calculation of token classifier * Fix most tests * Add docs * Add model integration test * Make all tests pass * Add LayoutLMv3FeatureExtractor * Improve integration test + make fixup * Add example script * Fix style * Add LayoutLMv3Processor * Fix style * Add option to add visual labels * Make more tokenizer tests pass * Fix more tests * Make more tests pass * Fix bug and improve docs * Fix import of processors * Improve docstrings * Fix toctree and improve docs * Fix auto tokenizer * Move tests to model folder * Move tests to model folder * change default behavior add_prefix_space * add prefix space for fast * add_prefix_spcae set to True for Fast * no space before `unique_no_split` token * add test to hightligh special treatment of added tokens * fix `test_batch_encode_dynamic_overflowing` by building a long enough example * fix `test_full_tokenizer` with add_prefix_token * Fix tokenizer integration test * Make the code more readable * Add tests for LayoutLMv3Processor * Fix style * Add model to README and update init * Apply suggestions from code review * Replace asserts by value errors * Add suggestion by @ducviet00 * Add model to doc tests * Simplify script * Improve README * a step ahead to fix * Update pair_input_test * Make all tokenizer tests pass - phew * Make style * Add LayoutLMv3 to CI job * Fix auto mapping * Fix CI job name * Make all processor tests pass * Make tests of LayoutLMv2 and LayoutXLM consistent * Add copied from statements to fast tokenizer * Add copied from statements to slow tokenizer * Remove add_visual_labels attribute * Fix tests * Add link to notebooks * Improve docs of LayoutLMv3Processor * Fix reference to section Co-authored-by: SaulLu <lucilesaul.com@gmail.com> Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
5077 lines
116 KiB
Python
5077 lines
116 KiB
Python
# This file is autogenerated by the command `make fix-copies`, do not edit.
|
|
# flake8: noqa
|
|
from ..utils import DummyObject, requires_backends
|
|
|
|
|
|
class PyTorchBenchmark(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PyTorchBenchmarkArguments(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GlueDataset(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GlueDataTrainingArguments(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LineByLineTextDataset(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LineByLineWithRefDataset(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LineByLineWithSOPTextDataset(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SquadDataset(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SquadDataTrainingArguments(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TextDataset(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TextDatasetForNextSentencePrediction(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Constraint(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConstraintListState(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DisjunctiveConstraint(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PhrasalConstraint(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BeamScorer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BeamSearchScorer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConstrainedBeamSearchScorer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ForcedBOSTokenLogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ForcedEOSTokenLogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class HammingDiversityLogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class InfNanRemoveLogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LogitsProcessorList(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LogitsWarper(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MinLengthLogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class NoBadWordsLogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class NoRepeatNGramLogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PrefixConstrainedLogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RepetitionPenaltyLogitsProcessor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TemperatureLogitsWarper(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TopKLogitsWarper(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TopPLogitsWarper(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MaxLengthCriteria(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MaxTimeCriteria(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class StoppingCriteria(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class StoppingCriteriaList(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def top_k_top_p_filtering(*args, **kwargs):
|
|
requires_backends(top_k_top_p_filtering, ["torch"])
|
|
|
|
|
|
class PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class AlbertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AlbertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AlbertForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AlbertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AlbertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AlbertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AlbertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AlbertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_albert(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_albert, ["torch"])
|
|
|
|
|
|
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_AUDIO_XVECTOR_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_CAUSAL_LM_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_CTC_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_MASKED_LM_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_OBJECT_DETECTION_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_PRETRAINING_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None
|
|
|
|
|
|
MODEL_FOR_VISION_2_SEQ_MAPPING = None
|
|
|
|
|
|
MODEL_MAPPING = None
|
|
|
|
|
|
MODEL_WITH_LM_HEAD_MAPPING = None
|
|
|
|
|
|
class AutoModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForAudioClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForAudioFrameClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForAudioXVector(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForImageSegmentation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForInstanceSegmentation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForMaskedImageModeling(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForNextSentencePrediction(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForObjectDetection(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForSemanticSegmentation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForSeq2SeqLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForSpeechSeq2Seq(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForTableQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelForVision2Seq(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AutoModelWithLMHead(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
BART_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class BartForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BartForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BartForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BartForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BartModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BartPretrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PretrainedBartModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class BeitForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BeitForMaskedImageModeling(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BeitForSemanticSegmentation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BeitModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BeitPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class BertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertForNextSentencePrediction(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertLMHeadModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_bert(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_bert, ["torch"])
|
|
|
|
|
|
class BertGenerationDecoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertGenerationEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BertGenerationPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_bert_generation(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_bert_generation, ["torch"])
|
|
|
|
|
|
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class BigBirdForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_big_bird(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_big_bird, ["torch"])
|
|
|
|
|
|
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class BigBirdPegasusForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdPegasusForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdPegasusForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdPegasusForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdPegasusModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BigBirdPegasusPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class BlenderbotForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BlenderbotForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BlenderbotModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BlenderbotPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class BlenderbotSmallForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BlenderbotSmallForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BlenderbotSmallModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class BlenderbotSmallPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class CamembertForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CamembertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CamembertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CamembertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CamembertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CamembertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CamembertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class CanineForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CanineForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CanineForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CanineForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CanineLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CanineModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CaninePreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_canine(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_canine, ["torch"])
|
|
|
|
|
|
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class CLIPModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CLIPPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CLIPTextModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CLIPVisionModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ConvBertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConvBertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConvBertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConvBertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConvBertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConvBertLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConvBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConvBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_convbert(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_convbert, ["torch"])
|
|
|
|
|
|
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ConvNextForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConvNextModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ConvNextPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class CTRLForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CTRLLMHeadModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CTRLModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CTRLPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
CVT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class CvtForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CvtModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class CvtPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class Data2VecAudioForAudioFrameClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecAudioForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecAudioForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecAudioForXVector(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecAudioModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecAudioPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecTextForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecTextForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecTextForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecTextForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecTextForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecTextForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecTextModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecTextPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecVisionForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecVisionForSemanticSegmentation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecVisionModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Data2VecVisionPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class DebertaForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class DebertaV2ForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaV2ForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaV2ForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaV2ForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaV2ForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaV2Model(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DebertaV2PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class DecisionTransformerGPT2Model(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DecisionTransformerGPT2PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DecisionTransformerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DecisionTransformerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class DeiTForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DeiTForImageClassificationWithTeacher(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DeiTForMaskedImageModeling(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DeiTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DeiTPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class DistilBertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DistilBertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DistilBertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DistilBertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DistilBertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DistilBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DistilBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class DPRContextEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DPRPretrainedContextEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DPRPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DPRPretrainedQuestionEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DPRPretrainedReader(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DPRQuestionEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DPRReader(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
DPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class DPTForDepthEstimation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DPTForSemanticSegmentation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DPTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class DPTPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ElectraForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ElectraForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ElectraForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ElectraForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ElectraForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ElectraForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ElectraForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ElectraModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ElectraPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_electra(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_electra, ["torch"])
|
|
|
|
|
|
class EncoderDecoderModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class FlaubertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlaubertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlaubertForQuestionAnsweringSimple(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlaubertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlaubertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlaubertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlaubertWithLMHeadModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class FlavaForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlavaImageCodebook(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlavaImageModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlavaModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlavaMultimodalModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlavaPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FlavaTextModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
FNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class FNetForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FNetForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FNetForNextSentencePrediction(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FNetForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FNetForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FNetForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FNetForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FNetLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FNetModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FNetPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FSMTForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FSMTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PretrainedFSMTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class FunnelBaseModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FunnelForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FunnelForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FunnelForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FunnelForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FunnelForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FunnelForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FunnelModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class FunnelPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_funnel(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_funnel, ["torch"])
|
|
|
|
|
|
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class GLPNForDepthEstimation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GLPNModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GLPNPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class GPT2DoubleHeadsModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPT2ForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPT2ForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPT2LMHeadModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPT2Model(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPT2PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_gpt2(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_gpt2, ["torch"])
|
|
|
|
|
|
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class GPTNeoForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPTNeoForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPTNeoModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPTNeoPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_gpt_neo(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_gpt_neo, ["torch"])
|
|
|
|
|
|
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class GPTJForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPTJForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPTJForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPTJModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class GPTJPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class HubertForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class HubertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class HubertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class HubertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class IBertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class IBertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class IBertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class IBertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class IBertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class IBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class IBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ImageGPTForCausalImageModeling(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ImageGPTForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ImageGPTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ImageGPTPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_imagegpt(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_imagegpt, ["torch"])
|
|
|
|
|
|
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class LayoutLMForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class LayoutLMv2ForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMv2ForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMv2ForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMv2Model(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMv2PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class LayoutLMv3ForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMv3ForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMv3ForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMv3Model(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LayoutLMv3PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
LED_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class LEDForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LEDForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LEDForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LEDModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LEDPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class LongformerForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LongformerForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LongformerForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LongformerForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LongformerForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LongformerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LongformerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LongformerSelfAttention(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class LukeForEntityClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LukeForEntityPairClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LukeForEntitySpanClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LukeForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LukeModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LukePreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LxmertEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LxmertForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LxmertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LxmertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LxmertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LxmertVisualFeatureEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class LxmertXLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class M2M100ForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class M2M100Model(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class M2M100PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MarianForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MarianModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MarianMTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class MaskFormerForInstanceSegmentation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MaskFormerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MaskFormerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MBartForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MBartForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MBartForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MBartForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MBartModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MBartPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class MegatronBertForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MegatronBertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MegatronBertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MegatronBertForNextSentencePrediction(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MegatronBertForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MegatronBertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MegatronBertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MegatronBertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MegatronBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MegatronBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MMBTForClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MMBTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ModalEmbeddings(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class MobileBertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MobileBertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MobileBertForNextSentencePrediction(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MobileBertForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MobileBertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MobileBertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MobileBertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MobileBertLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MobileBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MobileBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_mobilebert(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_mobilebert, ["torch"])
|
|
|
|
|
|
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class MPNetForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MPNetForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MPNetForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MPNetForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MPNetForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MPNetLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MPNetModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MPNetPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MT5EncoderModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MT5ForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class MT5Model(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class NystromformerForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class NystromformerForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class NystromformerForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class NystromformerForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class NystromformerForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class NystromformerLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class NystromformerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class NystromformerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class OpenAIGPTDoubleHeadsModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class OpenAIGPTForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class OpenAIGPTLMHeadModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class OpenAIGPTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class OpenAIGPTPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_openai_gpt(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_openai_gpt, ["torch"])
|
|
|
|
|
|
OPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class OPTForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class OPTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class OPTPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PegasusForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PegasusForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PegasusModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PegasusPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class PerceiverForImageClassificationConvProcessing(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PerceiverForImageClassificationFourier(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PerceiverForImageClassificationLearned(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PerceiverForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PerceiverForMultimodalAutoencoding(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PerceiverForOpticalFlow(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PerceiverForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PerceiverLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PerceiverModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PerceiverPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class PLBartForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PLBartForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PLBartForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PLBartModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PLBartPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class PoolFormerForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PoolFormerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class PoolFormerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ProphetNetDecoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ProphetNetEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ProphetNetForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ProphetNetForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ProphetNetModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ProphetNetPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class QDQBertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class QDQBertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class QDQBertForNextSentencePrediction(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class QDQBertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class QDQBertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class QDQBertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class QDQBertLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class QDQBertLMHeadModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class QDQBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class QDQBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_qdqbert(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_qdqbert, ["torch"])
|
|
|
|
|
|
class RagModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RagPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RagSequenceForGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RagTokenForGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
REALM_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class RealmEmbedder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RealmForOpenQA(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RealmKnowledgeAugEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RealmPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RealmReader(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RealmRetriever(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RealmScorer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_realm(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_realm, ["torch"])
|
|
|
|
|
|
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ReformerAttention(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ReformerForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ReformerForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ReformerForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ReformerLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ReformerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ReformerModelWithLMHead(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ReformerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class RegNetForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RegNetModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RegNetPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class RemBertForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RemBertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RemBertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RemBertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RemBertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RemBertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RemBertLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RemBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RemBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_rembert(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_rembert, ["torch"])
|
|
|
|
|
|
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ResNetForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ResNetModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ResNetPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class RetriBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RetriBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class RobertaForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RobertaForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RobertaForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RobertaForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RobertaForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RobertaForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RobertaModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RobertaPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class RoFormerForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RoFormerForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RoFormerForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RoFormerForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RoFormerForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RoFormerForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RoFormerLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RoFormerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class RoFormerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_roformer(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_roformer, ["torch"])
|
|
|
|
|
|
SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class SegformerDecodeHead(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SegformerForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SegformerForSemanticSegmentation(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SegformerLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SegformerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SegformerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
SEW_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class SEWForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SEWForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SEWModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SEWPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class SEWDForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SEWDForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SEWDModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SEWDPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SpeechEncoderDecoderModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class Speech2TextForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Speech2TextModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Speech2TextPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Speech2Text2ForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Speech2Text2PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class SplinterForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SplinterForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SplinterLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SplinterModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SplinterPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class SqueezeBertForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SqueezeBertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SqueezeBertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SqueezeBertForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SqueezeBertForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SqueezeBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SqueezeBertModule(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SqueezeBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class SwinForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SwinForMaskedImageModeling(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SwinModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class SwinPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
T5_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class T5EncoderModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class T5ForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class T5Model(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class T5PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_t5(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_t5, ["torch"])
|
|
|
|
|
|
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class TrajectoryTransformerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TrajectoryTransformerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class AdaptiveEmbedding(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TransfoXLForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TransfoXLLMHeadModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TransfoXLModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TransfoXLPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_transfo_xl(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_transfo_xl, ["torch"])
|
|
|
|
|
|
TROCR_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class TrOCRForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class TrOCRPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class UniSpeechForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class UniSpeechSatForAudioFrameClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechSatForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechSatForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechSatForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechSatForXVector(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechSatModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class UniSpeechSatPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
VAN_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class VanForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VanModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VanPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
VILT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ViltForImageAndTextRetrieval(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViltForImagesAndTextClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViltForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViltForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViltLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViltModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViltPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VisionEncoderDecoderModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VisionTextDualEncoderModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class VisualBertForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VisualBertForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VisualBertForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VisualBertForRegionToPhraseAlignment(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VisualBertForVisualReasoning(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VisualBertLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VisualBertModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class VisualBertPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ViTForImageClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViTForMaskedImageModeling(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViTModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViTPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class ViTMAEForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViTMAELayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViTMAEModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class ViTMAEPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class Wav2Vec2ForAudioFrameClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ForXVector(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2Model(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2PreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class Wav2Vec2ConformerForAudioFrameClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ConformerForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ConformerForPreTraining(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ConformerForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ConformerForXVector(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ConformerModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Wav2Vec2ConformerPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class WavLMForAudioFrameClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class WavLMForCTC(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class WavLMForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class WavLMForXVector(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class WavLMModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class WavLMPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class XGLMForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XGLMModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XGLMPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class XLMForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMForQuestionAnsweringSimple(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMWithLMHeadModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class XLMProphetNetDecoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMProphetNetEncoder(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMProphetNetForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMProphetNetForConditionalGeneration(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMProphetNetModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class XLMRobertaForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class XLMRobertaXLForCausalLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaXLForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaXLForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaXLForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaXLForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaXLForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaXLModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLMRobertaXLPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class XLNetForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLNetForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLNetForQuestionAnsweringSimple(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLNetForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLNetForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLNetLMHeadModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLNetModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class XLNetPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def load_tf_weights_in_xlnet(*args, **kwargs):
|
|
requires_backends(load_tf_weights_in_xlnet, ["torch"])
|
|
|
|
|
|
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class YolosForObjectDetection(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class YolosModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class YolosPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
|
|
|
|
|
class YosoForMaskedLM(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class YosoForMultipleChoice(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class YosoForQuestionAnswering(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class YosoForSequenceClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class YosoForTokenClassification(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class YosoLayer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class YosoModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class YosoPreTrainedModel(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class Adafactor(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
class AdamW(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def get_constant_schedule(*args, **kwargs):
|
|
requires_backends(get_constant_schedule, ["torch"])
|
|
|
|
|
|
def get_constant_schedule_with_warmup(*args, **kwargs):
|
|
requires_backends(get_constant_schedule_with_warmup, ["torch"])
|
|
|
|
|
|
def get_cosine_schedule_with_warmup(*args, **kwargs):
|
|
requires_backends(get_cosine_schedule_with_warmup, ["torch"])
|
|
|
|
|
|
def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
|
|
requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])
|
|
|
|
|
|
def get_linear_schedule_with_warmup(*args, **kwargs):
|
|
requires_backends(get_linear_schedule_with_warmup, ["torch"])
|
|
|
|
|
|
def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
|
|
requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])
|
|
|
|
|
|
def get_scheduler(*args, **kwargs):
|
|
requires_backends(get_scheduler, ["torch"])
|
|
|
|
|
|
class Conv1D(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def apply_chunking_to_forward(*args, **kwargs):
|
|
requires_backends(apply_chunking_to_forward, ["torch"])
|
|
|
|
|
|
def prune_layer(*args, **kwargs):
|
|
requires_backends(prune_layer, ["torch"])
|
|
|
|
|
|
class Trainer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
def torch_distributed_zero_first(*args, **kwargs):
|
|
requires_backends(torch_distributed_zero_first, ["torch"])
|
|
|
|
|
|
class Seq2SeqTrainer(metaclass=DummyObject):
|
|
_backends = ["torch"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["torch"])
|