transformers/tests/quantization/fbgemm_fp8/test_fbgemm_fp8.py
Yao Matrix a5a0c7b888
switch to device agnostic device calling for test cases (#38247)
* use device agnostic APIs in test cases

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add one more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* xpu now supports integer device id, aligning to CUDA behaviors

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update to use device_properties

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update comment

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 10:18:53 +02:00

302 lines
11 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, FbgemmFp8Config, OPTForCausalLM
from transformers.testing_utils import (
backend_empty_cache,
require_accelerate,
require_fbgemm_gpu,
require_read_token,
require_torch_gpu,
require_torch_multi_gpu,
slow,
torch_device,
)
from transformers.utils import is_accelerate_available, is_torch_available
if is_torch_available():
import torch
if is_accelerate_available():
from accelerate import init_empty_weights
@require_torch_gpu
class FbgemmFp8ConfigTest(unittest.TestCase):
def test_to_dict(self):
"""
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
"""
quantization_config = FbgemmFp8Config()
config_to_dict = quantization_config.to_dict()
for key in config_to_dict:
self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
def test_from_dict(self):
"""
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
"""
dict = {"modules_to_not_convert": ["lm_head.weight"], "quant_method": "fbgemm_fp8"}
quantization_config = FbgemmFp8Config.from_dict(dict)
self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert)
self.assertEqual(dict["quant_method"], quantization_config.quant_method)
@slow
@require_torch_gpu
@require_fbgemm_gpu
@require_accelerate
@require_read_token
class FbgemmFp8Test(unittest.TestCase):
model_name = "meta-llama/Meta-Llama-3-8B"
input_text = "What are we having for dinner?"
max_new_tokens = 9
EXPECTED_OUTPUT = "What are we having for dinner?\nI'm having a steak and a salad"
device_map = "cuda"
offload_device_map = {
"model.embed_tokens": 0,
"model.layers.0": 0,
"model.layers.1": 0,
"model.layers.2": 0,
"model.layers.3": 0,
"model.layers.4": 0,
"model.layers.5": 0,
"model.layers.6": 0,
"model.layers.7": 0,
"model.layers.8": 0,
"model.layers.9": 0,
"model.layers.10": 0,
"model.layers.11": 0,
"model.layers.12": 0,
"model.layers.13": 0,
"model.layers.14": 0,
"model.layers.15": 0,
"model.layers.16": "cpu",
"model.layers.17": "cpu",
"model.layers.18": "cpu",
"model.layers.19": "cpu",
"model.layers.20": "disk",
"model.layers.21": "disk",
"model.layers.22": "disk",
"model.layers.23": "disk",
"model.layers.24": "disk",
"model.layers.25": "disk",
"model.layers.26": "disk",
"model.layers.27": "disk",
"model.layers.28": "disk",
"model.layers.29": "disk",
"model.layers.30": "disk",
"model.layers.31": "disk",
"model.norm": "disk",
"lm_head": "disk",
}
# called only once for all test in this class
@classmethod
def setUpClass(cls):
"""
Setup quantized model
"""
quantization_config = FbgemmFp8Config()
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.model_name, device_map=cls.device_map, quantization_config=quantization_config
)
def tearDown(self):
gc.collect()
backend_empty_cache(torch_device)
gc.collect()
def test_quantized_model_conversion(self):
"""
Simple test that checks if the quantized model has been converted properly
"""
from transformers.integrations import FbgemmFp8Linear, replace_with_fbgemm_fp8_linear
model_id = "facebook/opt-350m"
config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
quantization_config = FbgemmFp8Config()
with init_empty_weights():
model = OPTForCausalLM(config)
nb_linears = 0
for module in model.modules():
if isinstance(module, torch.nn.Linear):
nb_linears += 1
model = replace_with_fbgemm_fp8_linear(model, quantization_config=quantization_config)
nb_fbgemm_linear = 0
for module in model.modules():
if isinstance(module, FbgemmFp8Linear):
nb_fbgemm_linear += 1
self.assertEqual(nb_linears - 1, nb_fbgemm_linear)
with init_empty_weights():
model = OPTForCausalLM(config)
quantization_config = FbgemmFp8Config(modules_to_not_convert=["fc1"])
model = replace_with_fbgemm_fp8_linear(model, quantization_config=quantization_config)
nb_fbgemm_linear = 0
for module in model.modules():
if isinstance(module, FbgemmFp8Linear):
nb_fbgemm_linear += 1
self.assertEqual(nb_linears - 25, nb_fbgemm_linear)
def test_quantized_model(self):
"""
Simple test that checks if the quantized model is working properly
"""
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
def test_save_pretrained(self):
"""
Simple test that checks if the quantized model is working properly after being saved and loaded
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map)
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
def test_change_loading_attributes(self):
"""
Simple test that checks if the quantized model is working properly after being saved and loaded
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
quantization_config = FbgemmFp8Config(activation_scale_ub=1000.0)
model = AutoModelForCausalLM.from_pretrained(
tmpdirname, device_map=self.device_map, quantization_config=quantization_config
)
self.assertEqual(model.model.layers[1].mlp.down_proj.input_scale_ub.item(), 1000.0)
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
@require_torch_multi_gpu
def test_quantized_model_multi_gpu(self):
"""
Simple test that checks if the quantized model is working properly with multiple GPUs
set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs
"""
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
quantization_config = FbgemmFp8Config()
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name, device_map="auto", quantization_config=quantization_config
)
self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1})
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
def test_quantized_model_offload(self):
"""
Simple test that checks if the quantized model returns an error when loading with cpu/disk offloaded
"""
quantization_config = FbgemmFp8Config()
with self.assertRaisesRegex(
ValueError, "You are attempting to load an FP8 model with a device_map that contains a CPU or disk device."
):
AutoModelForCausalLM.from_pretrained(
self.model_name, device_map=self.offload_device_map, quantization_config=quantization_config
)
def test_save_pretrained_offload(self):
"""
Simple test that checks if the saved quantized model is working properly cpu/disk offload
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
quantized_model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.offload_device_map)
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
@require_torch_multi_gpu
def test_save_pretrained_multi_gpu(self):
"""
Simple test that checks if the quantized model is working properly after being saved and loaded
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto")
self.assertTrue(set(model.hf_device_map.values()) == {0, 1})
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
@require_torch_gpu
@require_accelerate
@require_fbgemm_gpu
class FbgemmFp8LinearTest(unittest.TestCase):
def test_linear_preserves_shape(self):
"""
Test that FbgemmFp8Linear preserves shape when in_features == out_features.
"""
from transformers.integrations import FbgemmFp8Linear
with init_empty_weights(include_buffers=True):
linear = FbgemmFp8Linear(1024, 1024, True)
x = torch.rand((17, 23, 1024))
x_ = linear(x)
self.assertEqual(x_.shape, x.shape)
def test_linear_with_diff_feature_size_preserves_shape(self):
"""
Test that FbgemmFp8Linear generates the correct shape when in_features != out_features.
"""
from transformers.integrations import FbgemmFp8Linear
with init_empty_weights(include_buffers=True):
linear = FbgemmFp8Linear(1024, 2048, True)
x = torch.rand((17, 23, 1024))
x_ = linear(x)
self.assertEqual(x_.shape, (17, 23, 2048))