mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* skip * fix * better check * Update import_utils.py --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com> Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
351 lines
14 KiB
Python
351 lines
14 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch ZoeDepth model."""
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import Dinov2Config, ZoeDepthConfig
|
|
from transformers.file_utils import is_torch_available, is_vision_available
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
from transformers.utils.import_utils import get_torch_major_and_minor_version
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import ZoeDepthForDepthEstimation
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import ZoeDepthImageProcessor
|
|
|
|
|
|
class ZoeDepthModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=2,
|
|
num_channels=3,
|
|
image_size=32,
|
|
patch_size=16,
|
|
use_labels=True,
|
|
num_labels=3,
|
|
is_training=True,
|
|
hidden_size=4,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
intermediate_size=8,
|
|
out_features=["stage1", "stage2"],
|
|
apply_layernorm=False,
|
|
reshape_hidden_states=False,
|
|
neck_hidden_sizes=[2, 2],
|
|
fusion_hidden_size=6,
|
|
bottleneck_features=6,
|
|
num_out_features=[6, 6, 6, 6],
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.out_features = out_features
|
|
self.apply_layernorm = apply_layernorm
|
|
self.reshape_hidden_states = reshape_hidden_states
|
|
self.use_labels = use_labels
|
|
self.num_labels = num_labels
|
|
self.is_training = is_training
|
|
self.neck_hidden_sizes = neck_hidden_sizes
|
|
self.fusion_hidden_size = fusion_hidden_size
|
|
self.bottleneck_features = bottleneck_features
|
|
self.num_out_features = num_out_features
|
|
# ZoeDepth's sequence length
|
|
self.seq_length = (self.image_size // self.patch_size) ** 2 + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return ZoeDepthConfig(
|
|
backbone_config=self.get_backbone_config(),
|
|
backbone=None,
|
|
neck_hidden_sizes=self.neck_hidden_sizes,
|
|
fusion_hidden_size=self.fusion_hidden_size,
|
|
bottleneck_features=self.bottleneck_features,
|
|
num_out_features=self.num_out_features,
|
|
)
|
|
|
|
def get_backbone_config(self):
|
|
return Dinov2Config(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
is_training=self.is_training,
|
|
out_features=self.out_features,
|
|
reshape_hidden_states=self.reshape_hidden_states,
|
|
)
|
|
|
|
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
|
|
config.num_labels = self.num_labels
|
|
model = ZoeDepthForDepthEstimation(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class ZoeDepthModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as ZoeDepth does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (ZoeDepthForDepthEstimation,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"depth-estimation": ZoeDepthForDepthEstimation} if is_torch_available() else {}
|
|
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
# `strict=True/False` are both failing with torch 2.7, see #38677
|
|
test_torch_exportable = not get_torch_major_and_minor_version() == "2.7"
|
|
|
|
def setUp(self):
|
|
self.model_tester = ZoeDepthModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=ZoeDepthConfig, has_text_modality=False, hidden_size=37, common_properties=[]
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="ZoeDepth with AutoBackbone does not have a base model and hence no input_embeddings")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="ZoeDepth with AutoBackbone does not have a base model and hence no input_embeddings")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
def test_for_depth_estimation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="ZoeDepth with AutoBackbone does not have a base model and hence no input_embeddings")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="ZoeDepth does not support training yet")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="ZoeDepth does not support training yet")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="ZoeDepth does not support training yet")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="ZoeDepth does not support training yet")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "Intel/zoedepth-nyu"
|
|
model = ZoeDepthForDepthEstimation.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
@slow
|
|
class ZoeDepthModelIntegrationTest(unittest.TestCase):
|
|
expected_slice_post_processing = {
|
|
(False, False): [
|
|
[[1.1348238, 1.1193453, 1.130562], [1.1754476, 1.1613507, 1.1701596], [1.2287744, 1.2101802, 1.2148322]],
|
|
[[2.7170, 2.6550, 2.6839], [2.9827, 2.9438, 2.9587], [3.2340, 3.1817, 3.1602]],
|
|
],
|
|
(False, True): [
|
|
[[1.0610938, 1.1042216, 1.1429265], [1.1099341, 1.148696, 1.1817775], [1.1656011, 1.1988826, 1.2268101]],
|
|
[[2.5848, 2.7391, 2.8694], [2.7882, 2.9872, 3.1244], [2.9436, 3.1812, 3.3188]],
|
|
],
|
|
(True, False): [
|
|
[[1.8382794, 1.8380532, 1.8375976], [1.848761, 1.8485023, 1.8479986], [1.8571457, 1.8568444, 1.8562847]],
|
|
[[6.2030, 6.1902, 6.1777], [6.2303, 6.2176, 6.2053], [6.2561, 6.2436, 6.2312]],
|
|
],
|
|
(True, True): [
|
|
[[1.8306141, 1.8305621, 1.8303483], [1.8410318, 1.8409299, 1.8406585], [1.8492792, 1.8491366, 1.8488203]],
|
|
[[6.2616, 6.2520, 6.2435], [6.2845, 6.2751, 6.2667], [6.3065, 6.2972, 6.2887]],
|
|
],
|
|
} # (pad, flip)
|
|
|
|
def test_inference_depth_estimation(self):
|
|
image_processor = ZoeDepthImageProcessor.from_pretrained("Intel/zoedepth-nyu")
|
|
model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu").to(torch_device)
|
|
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
predicted_depth = outputs.predicted_depth
|
|
|
|
# verify the predicted depth
|
|
expected_shape = torch.Size((1, 384, 512))
|
|
self.assertEqual(predicted_depth.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[1.0020, 1.0219, 1.0389], [1.0349, 1.0816, 1.1000], [1.0576, 1.1094, 1.1249]],
|
|
).to(torch_device)
|
|
|
|
torch.testing.assert_close(outputs.predicted_depth[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
|
|
|
|
def test_inference_depth_estimation_multiple_heads(self):
|
|
image_processor = ZoeDepthImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti")
|
|
model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti").to(torch_device)
|
|
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
predicted_depth = outputs.predicted_depth
|
|
|
|
# verify the predicted depth
|
|
expected_shape = torch.Size((1, 384, 512))
|
|
self.assertEqual(predicted_depth.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[1.1571, 1.1438, 1.1783], [1.2163, 1.2036, 1.2320], [1.2688, 1.2461, 1.2734]],
|
|
).to(torch_device)
|
|
|
|
torch.testing.assert_close(outputs.predicted_depth[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
|
|
|
|
def check_target_size(
|
|
self,
|
|
image_processor,
|
|
pad_input,
|
|
images,
|
|
outputs,
|
|
raw_outputs,
|
|
raw_outputs_flipped=None,
|
|
):
|
|
outputs_large = image_processor.post_process_depth_estimation(
|
|
raw_outputs,
|
|
[img.size[::-1] for img in images],
|
|
outputs_flipped=raw_outputs_flipped,
|
|
target_sizes=[tuple(np.array(img.size[::-1]) * 2) for img in images],
|
|
do_remove_padding=pad_input,
|
|
)
|
|
|
|
for img, out, out_l in zip(images, outputs, outputs_large):
|
|
out = out["predicted_depth"]
|
|
out_l = out_l["predicted_depth"]
|
|
out_l_reduced = torch.nn.functional.interpolate(
|
|
out_l.unsqueeze(0).unsqueeze(1), size=img.size[::-1], mode="bicubic", align_corners=False
|
|
)
|
|
out_l_reduced = out_l_reduced.squeeze(0).squeeze(0)
|
|
torch.testing.assert_close(out, out_l_reduced, rtol=2e-2, atol=2e-2)
|
|
|
|
def check_post_processing_test(self, image_processor, images, model, pad_input=True, flip_aug=True):
|
|
inputs = image_processor(images=images, return_tensors="pt", do_pad=pad_input).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
raw_outputs = model(**inputs)
|
|
raw_outputs_flipped = None
|
|
if flip_aug:
|
|
raw_outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
|
|
|
|
outputs = image_processor.post_process_depth_estimation(
|
|
raw_outputs,
|
|
[img.size[::-1] for img in images],
|
|
outputs_flipped=raw_outputs_flipped,
|
|
do_remove_padding=pad_input,
|
|
)
|
|
|
|
expected_slices = torch.tensor(self.expected_slice_post_processing[pad_input, flip_aug]).to(torch_device)
|
|
for img, out, expected_slice in zip(images, outputs, expected_slices):
|
|
out = out["predicted_depth"]
|
|
self.assertTrue(img.size == out.shape[::-1])
|
|
torch.testing.assert_close(expected_slice, out[:3, :3], rtol=1e-3, atol=1e-3)
|
|
|
|
self.check_target_size(image_processor, pad_input, images, outputs, raw_outputs, raw_outputs_flipped)
|
|
|
|
def test_post_processing_depth_estimation_post_processing_nopad_noflip(self):
|
|
images = [prepare_img(), Image.open("./tests/fixtures/tests_samples/COCO/000000004016.png")]
|
|
image_processor = ZoeDepthImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti", keep_aspect_ratio=False)
|
|
model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti").to(torch_device)
|
|
|
|
self.check_post_processing_test(image_processor, images, model, pad_input=False, flip_aug=False)
|
|
|
|
def test_inference_depth_estimation_post_processing_nopad_flip(self):
|
|
images = [prepare_img(), Image.open("./tests/fixtures/tests_samples/COCO/000000004016.png")]
|
|
image_processor = ZoeDepthImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti", keep_aspect_ratio=False)
|
|
model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti").to(torch_device)
|
|
|
|
self.check_post_processing_test(image_processor, images, model, pad_input=False, flip_aug=True)
|
|
|
|
def test_inference_depth_estimation_post_processing_pad_noflip(self):
|
|
images = [prepare_img(), Image.open("./tests/fixtures/tests_samples/COCO/000000004016.png")]
|
|
image_processor = ZoeDepthImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti", keep_aspect_ratio=False)
|
|
model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti").to(torch_device)
|
|
|
|
self.check_post_processing_test(image_processor, images, model, pad_input=True, flip_aug=False)
|
|
|
|
def test_inference_depth_estimation_post_processing_pad_flip(self):
|
|
images = [prepare_img(), Image.open("./tests/fixtures/tests_samples/COCO/000000004016.png")]
|
|
image_processor = ZoeDepthImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti", keep_aspect_ratio=False)
|
|
model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti").to(torch_device)
|
|
|
|
self.check_post_processing_test(image_processor, images, model, pad_input=True, flip_aug=True)
|