mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
426 lines
18 KiB
Python
426 lines
18 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import inspect
|
|
import unittest
|
|
|
|
from datasets import load_dataset
|
|
|
|
from transformers.models.superglue.configuration_superglue import SuperGlueConfig
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
from transformers.utils import cached_property, is_torch_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import SuperGlueForKeypointMatching
|
|
|
|
if is_vision_available():
|
|
from transformers import AutoImageProcessor
|
|
|
|
|
|
class SuperGlueModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=2,
|
|
image_width=80,
|
|
image_height=60,
|
|
keypoint_detector_config=None,
|
|
hidden_size: int = 64,
|
|
keypoint_encoder_sizes: list[int] = [32, 64],
|
|
gnn_layers_types: list[str] = ["self", "cross"] * 2,
|
|
num_attention_heads: int = 4,
|
|
sinkhorn_iterations: int = 100,
|
|
matching_threshold: float = 0.2,
|
|
):
|
|
if keypoint_detector_config is None:
|
|
keypoint_detector_config = {
|
|
"encoder_hidden_sizes": [32, 64],
|
|
"decoder_hidden_size": 64,
|
|
"keypoint_decoder_dim": 65,
|
|
"descriptor_decoder_dim": 64,
|
|
"keypoint_threshold": 0.005,
|
|
"max_keypoints": 256,
|
|
"nms_radius": 4,
|
|
"border_removal_distance": 4,
|
|
}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_width = image_width
|
|
self.image_height = image_height
|
|
|
|
self.keypoint_detector_config = keypoint_detector_config
|
|
self.hidden_size = hidden_size
|
|
self.keypoint_encoder_sizes = keypoint_encoder_sizes
|
|
self.gnn_layers_types = gnn_layers_types
|
|
self.num_attention_heads = num_attention_heads
|
|
self.sinkhorn_iterations = sinkhorn_iterations
|
|
self.matching_threshold = matching_threshold
|
|
|
|
def prepare_config_and_inputs(self):
|
|
# SuperGlue expects a grayscale image as input
|
|
pixel_values = floats_tensor([self.batch_size, 2, 3, self.image_height, self.image_width])
|
|
config = self.get_config()
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return SuperGlueConfig(
|
|
keypoint_detector_config=self.keypoint_detector_config,
|
|
hidden_size=self.hidden_size,
|
|
keypoint_encoder_sizes=self.keypoint_encoder_sizes,
|
|
gnn_layers_types=self.gnn_layers_types,
|
|
num_attention_heads=self.num_attention_heads,
|
|
sinkhorn_iterations=self.sinkhorn_iterations,
|
|
matching_threshold=self.matching_threshold,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = SuperGlueForKeypointMatching(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
maximum_num_matches = result.mask.shape[-1]
|
|
self.parent.assertEqual(
|
|
result.keypoints.shape,
|
|
(self.batch_size, 2, maximum_num_matches, 2),
|
|
)
|
|
self.parent.assertEqual(
|
|
result.matches.shape,
|
|
(self.batch_size, 2, maximum_num_matches),
|
|
)
|
|
self.parent.assertEqual(
|
|
result.matching_scores.shape,
|
|
(self.batch_size, 2, maximum_num_matches),
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class SuperGlueModelTest(ModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (SuperGlueForKeypointMatching,) if is_torch_available() else ()
|
|
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
has_attentions = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = SuperGlueModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=SuperGlueConfig, has_text_modality=False, hidden_size=64)
|
|
|
|
def test_config(self):
|
|
self.config_tester.create_and_test_config_to_json_string()
|
|
self.config_tester.create_and_test_config_to_json_file()
|
|
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
|
self.config_tester.create_and_test_config_with_num_labels()
|
|
self.config_tester.check_config_can_be_init_without_params()
|
|
self.config_tester.check_config_arguments_init()
|
|
|
|
@unittest.skip(reason="SuperGlueForKeypointMatching does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SuperGlueForKeypointMatching does not support input and output embeddings")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SuperGlueForKeypointMatching does not use feedforward chunking")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SuperGlueForKeypointMatching is not trainable")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SuperGlueForKeypointMatching is not trainable")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SuperGlueForKeypointMatching is not trainable")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SuperGlueForKeypointMatching is not trainable")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SuperGlue does not output any loss term in the forward pass")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.hidden_states
|
|
maximum_num_matches = outputs.mask.shape[-1]
|
|
|
|
hidden_states_sizes = (
|
|
self.model_tester.keypoint_encoder_sizes
|
|
+ [self.model_tester.hidden_size]
|
|
+ [self.model_tester.hidden_size, self.model_tester.hidden_size * 2]
|
|
* len(self.model_tester.gnn_layers_types)
|
|
+ [self.model_tester.hidden_size] * 2
|
|
)
|
|
|
|
for i, hidden_states_size in enumerate(hidden_states_sizes):
|
|
self.assertListEqual(
|
|
list(hidden_states[i].shape[-2:]),
|
|
[hidden_states_size, maximum_num_matches],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
def test_attention_outputs(self):
|
|
def check_attention_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
attentions = outputs.attentions
|
|
maximum_num_matches = outputs.mask.shape[-1]
|
|
|
|
expected_attention_shape = [
|
|
self.model_tester.num_attention_heads,
|
|
maximum_num_matches,
|
|
maximum_num_matches,
|
|
]
|
|
|
|
for i, attention in enumerate(attentions):
|
|
self.assertListEqual(
|
|
list(attention.shape[-3:]),
|
|
expected_attention_shape,
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
check_attention_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
|
|
check_attention_output(inputs_dict, config, model_class)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
from_pretrained_ids = ["magic-leap-community/superglue_indoor", "magic-leap-community/superglue_outdoor"]
|
|
for model_name in from_pretrained_ids:
|
|
model = SuperGlueForKeypointMatching.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
def test_forward_labels_should_be_none(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
model_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
# Provide an arbitrary sized Tensor as labels to model inputs
|
|
model_inputs["labels"] = torch.rand((128, 128))
|
|
|
|
with self.assertRaises(ValueError) as cm:
|
|
model(**model_inputs)
|
|
self.assertEqual(ValueError, cm.exception.__class__)
|
|
|
|
def test_batching_equivalence(self):
|
|
"""
|
|
Overwriting ModelTesterMixin.test_batching_equivalence since SuperGlue returns `matching_scores` tensors full of
|
|
zeros which causes the test to fail, because cosine_similarity of two zero tensors is 0.
|
|
Discussed here : https://github.com/huggingface/transformers/pull/29886#issuecomment-2481539481
|
|
"""
|
|
|
|
def recursive_check(batched_object, single_row_object, model_name, key):
|
|
if isinstance(batched_object, (list, tuple)):
|
|
for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
|
|
recursive_check(batched_object_value, single_row_object_value, model_name, key)
|
|
elif isinstance(batched_object, dict):
|
|
for batched_object_value, single_row_object_value in zip(
|
|
batched_object.values(), single_row_object.values()
|
|
):
|
|
recursive_check(batched_object_value, single_row_object_value, model_name, key)
|
|
# do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
|
|
elif batched_object is None or not isinstance(batched_object, torch.Tensor):
|
|
return
|
|
elif batched_object.dim() == 0:
|
|
return
|
|
else:
|
|
# indexing the first element does not always work
|
|
# e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
|
|
slice_ids = [slice(0, index) for index in single_row_object.shape]
|
|
batched_row = batched_object[slice_ids]
|
|
self.assertFalse(
|
|
torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
|
|
)
|
|
self.assertTrue(
|
|
(equivalence(batched_row, single_row_object)) <= 1e-03,
|
|
msg=(
|
|
f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
|
|
f"Difference={equivalence(batched_row, single_row_object)}."
|
|
),
|
|
)
|
|
|
|
def equivalence(tensor1, tensor2):
|
|
return torch.max(torch.abs(tensor1 - tensor2))
|
|
|
|
config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.output_hidden_states = True
|
|
|
|
model_name = model_class.__name__
|
|
batched_input_prepared = self._prepare_for_class(batched_input, model_class)
|
|
model = model_class(config).to(torch_device).eval()
|
|
|
|
batch_size = self.model_tester.batch_size
|
|
single_row_input = {}
|
|
for key, value in batched_input_prepared.items():
|
|
if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
|
|
# e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
|
|
single_batch_shape = value.shape[0] // batch_size
|
|
single_row_input[key] = value[:single_batch_shape]
|
|
else:
|
|
single_row_input[key] = value
|
|
|
|
with torch.no_grad():
|
|
model_batched_output = model(**batched_input_prepared)
|
|
model_row_output = model(**single_row_input)
|
|
|
|
if isinstance(model_batched_output, torch.Tensor):
|
|
model_batched_output = {"model_output": model_batched_output}
|
|
model_row_output = {"model_output": model_row_output}
|
|
|
|
for key in model_batched_output:
|
|
recursive_check(model_batched_output[key], model_row_output[key], model_name, key)
|
|
|
|
|
|
def prepare_imgs():
|
|
dataset = load_dataset("hf-internal-testing/image-matching-test-dataset", split="train")
|
|
image1 = dataset[0]["image"]
|
|
image2 = dataset[1]["image"]
|
|
image3 = dataset[2]["image"]
|
|
return [[image1, image2], [image3, image2]]
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class SuperGlueModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return (
|
|
AutoImageProcessor.from_pretrained("magic-leap-community/superglue_outdoor")
|
|
if is_vision_available()
|
|
else None
|
|
)
|
|
|
|
@slow
|
|
def test_inference(self):
|
|
model = SuperGlueForKeypointMatching.from_pretrained("magic-leap-community/superglue_outdoor").to(torch_device)
|
|
preprocessor = self.default_image_processor
|
|
images = prepare_imgs()
|
|
inputs = preprocessor(images=images, return_tensors="pt").to(torch_device)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, output_hidden_states=True, output_attentions=True)
|
|
|
|
predicted_number_of_matches = torch.sum(outputs.matches[0][0] != -1).item()
|
|
predicted_matches_values = outputs.matches[0, 0, :30]
|
|
predicted_matching_scores_values = outputs.matching_scores[0, 0, :20]
|
|
|
|
expected_number_of_matches = 282
|
|
expected_matches_values = torch.tensor([125,630,137,138,136,143,135,-1,-1,153,
|
|
154,156,117,160,-1,149,147,152,168,-1,
|
|
165,182,-1,190,187,188,189,112,-1,193],
|
|
device=predicted_matches_values.device) # fmt:skip
|
|
expected_matching_scores_values = torch.tensor([0.9899,0.0033,0.9897,0.9889,0.9879,0.7464,0.7109,0.0,0.0,0.9841,
|
|
0.9889,0.9639,0.0114,0.9559,0.0,0.9735,0.8018,0.5190,0.9157,0.0],
|
|
device=predicted_matches_values.device) # fmt:skip
|
|
|
|
"""
|
|
Because of inconsistencies introduced between CUDA versions, the checks here are less strict. SuperGlue relies
|
|
on SuperPoint, which may, depending on CUDA version, return different number of keypoints (866 or 867 in this
|
|
specific test example). The consequence of having different number of keypoints is that the number of matches
|
|
will also be different. In the 20 first matches being checked, having one keypoint less will result in 1 less
|
|
match. The matching scores will also be different, as the keypoints are different. The checks here are less
|
|
strict to account for these inconsistencies.
|
|
Therefore, the test checks that the predicted number of matches, matches and matching scores are close to the
|
|
expected values, individually. Here, the tolerance of the number of values changing is set to 2.
|
|
|
|
This was discussed [here](https://github.com/huggingface/transformers/pull/29886#issuecomment-2482752787)
|
|
Such CUDA inconsistencies can be found
|
|
[here](https://github.com/huggingface/transformers/pull/33200/files#r1785980300)
|
|
"""
|
|
|
|
self.assertTrue(abs(predicted_number_of_matches - expected_number_of_matches) < 4)
|
|
self.assertTrue(
|
|
torch.sum(~torch.isclose(predicted_matching_scores_values, expected_matching_scores_values, atol=1e-2)) < 4
|
|
)
|
|
self.assertTrue(torch.sum(predicted_matches_values != expected_matches_values) < 4)
|