transformers/tests/models/shieldgemma2/test_modeling_shieldgemma2.py
Cyril Vallez 4b8ec667e9
Remove all traces of low_cpu_mem_usage (#38792)
* remove it from all py files

* remove it from the doc

* remove it from examples

* style

* remove traces of _fast_init

* Update test_peft_integration.py

* CIs
2025-06-12 16:39:33 +02:00

61 lines
1.9 KiB
Python

# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Gemma3 model."""
import unittest
from io import BytesIO
import requests
from PIL import Image
from transformers import is_torch_available
from transformers.testing_utils import (
cleanup,
require_torch_accelerator,
slow,
torch_device,
)
if is_torch_available():
import torch
from transformers import ShieldGemma2ForImageClassification, ShieldGemma2Processor
@slow
@require_torch_accelerator
# @require_read_token
class ShieldGemma2IntegrationTest(unittest.TestCase):
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def test_model(self):
model_id = "google/shieldgemma-2-4b-it"
processor = ShieldGemma2Processor.from_pretrained(model_id, padding_side="left")
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
response = requests.get(url)
image = Image.open(BytesIO(response.content))
model = ShieldGemma2ForImageClassification.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(
torch_device
)
inputs = processor(images=[image]).to(torch_device)
output = model(**inputs)
self.assertEqual(len(output.probabilities), 3)
for element in output.probabilities:
self.assertEqual(len(element), 2)