mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* try 1 * try 2 * try 3 * try 4 * try 5 * try 6 * try 7 * try 8 * try 9 * try 10 --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
260 lines
10 KiB
Python
260 lines
10 KiB
Python
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Qwen3MoE model."""
|
|
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoTokenizer, Qwen3MoeConfig, is_torch_available, set_seed
|
|
from transformers.testing_utils import (
|
|
cleanup,
|
|
require_bitsandbytes,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_large_accelerator,
|
|
require_torch_multi_accelerator,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Qwen3ForQuestionAnswering,
|
|
Qwen3MoeForCausalLM,
|
|
Qwen3MoeForQuestionAnswering,
|
|
Qwen3MoeForSequenceClassification,
|
|
Qwen3MoeForTokenClassification,
|
|
Qwen3MoeModel,
|
|
)
|
|
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
|
|
|
|
|
|
class Qwen3MoeModelTester(CausalLMModelTester):
|
|
config_class = Qwen3MoeConfig
|
|
if is_torch_available():
|
|
base_model_class = Qwen3MoeModel
|
|
causal_lm_class = Qwen3MoeForCausalLM
|
|
sequence_class = Qwen3MoeForSequenceClassification
|
|
token_class = Qwen3MoeForTokenClassification
|
|
question_answering_class = Qwen3MoeForQuestionAnswering
|
|
|
|
|
|
@require_torch
|
|
class Qwen3MoeModelTest(CausalLMModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
Qwen3MoeModel,
|
|
Qwen3MoeForCausalLM,
|
|
Qwen3MoeForSequenceClassification,
|
|
Qwen3MoeForTokenClassification,
|
|
Qwen3MoeForQuestionAnswering,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": Qwen3MoeModel,
|
|
"text-classification": Qwen3MoeForSequenceClassification,
|
|
"token-classification": Qwen3MoeForTokenClassification,
|
|
"text-generation": Qwen3MoeForCausalLM,
|
|
"question-answering": Qwen3ForQuestionAnswering,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
test_all_params_have_gradient = False
|
|
model_tester_class = Qwen3MoeModelTester
|
|
|
|
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
|
|
def is_pipeline_test_to_skip(
|
|
self,
|
|
pipeline_test_case_name,
|
|
config_class,
|
|
model_architecture,
|
|
tokenizer_name,
|
|
image_processor_name,
|
|
feature_extractor_name,
|
|
processor_name,
|
|
):
|
|
return True
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest(reason="Qwen3Moe flash attention does not support right padding")
|
|
|
|
# Ignore copy
|
|
def test_load_balancing_loss(self):
|
|
r"""
|
|
Let's make sure we can actually compute the loss and do a backward on it.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.num_experts = 8
|
|
config.expert_interval = 2
|
|
config.output_router_logits = True
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
model = Qwen3MoeForCausalLM(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask)
|
|
self.assertEqual(result.router_logits[0].shape, (91, config.num_experts))
|
|
torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
|
|
|
|
# First, we make sure that adding padding tokens doesn't change the loss
|
|
# loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
|
|
pad_length = 1000
|
|
# Add padding tokens (assume that pad_token_id=1) to input_ids
|
|
padding_block = torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(torch_device)
|
|
padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left
|
|
padded_attention_mask = padded_input_ids.ne(1).to(torch_device)
|
|
|
|
padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
|
|
torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)
|
|
|
|
# We make sure that the loss of including padding tokens != the loss without padding tokens
|
|
# if attention_mask=None --> we don't exclude padding tokens
|
|
include_padding_result = model(padded_input_ids, attention_mask=None)
|
|
|
|
# This is to mimic torch.testing.assert_not_close
|
|
self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())
|
|
|
|
|
|
# Run on runners with larger accelerators (for example A10 instead of T4) with a lot of CPU RAM (e.g. g5-12xlarge)
|
|
@require_torch_multi_accelerator
|
|
@require_torch_large_accelerator
|
|
@require_torch
|
|
class Qwen3MoeIntegrationTest(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = None
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
del cls.model
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
@classmethod
|
|
def get_model(cls):
|
|
if cls.model is None:
|
|
cls.model = Qwen3MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen3-30B-A3B-Base", device_map="auto", load_in_4bit=True
|
|
)
|
|
|
|
return cls.model
|
|
|
|
@slow
|
|
def test_model_15b_a2b_logits(self):
|
|
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
|
|
model = self.get_model()
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
with torch.no_grad():
|
|
out = model(input_ids).logits.float().cpu()
|
|
|
|
# Expected mean on dim = -1
|
|
EXPECTED_MEAN = torch.tensor([[0.3244, 0.4406, 9.0972, 7.3597, 4.9985, 8.0314, 8.2148, 9.2134]])
|
|
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
|
|
|
|
# slicing logits[0, 0, 0:30]
|
|
EXPECTED_SLICE = torch.tensor([6.8984, 4.8633, 4.7734, 4.5898, 2.5664, 2.9902, 4.8828, 5.9414, 4.6250, 3.0840, 5.1602, 6.0117, 4.9453, 5.3008, 3.3145, 11.3906, 12.8359, 12.4844, 11.2891, 11.0547, 11.0391, 10.3359, 10.3438, 10.2578, 10.7969, 5.9688, 3.7676, 5.5938, 5.3633, 5.8203]) # fmt: skip
|
|
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
|
|
|
|
@slow
|
|
def test_model_15b_a2b_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = "To be or not to be: the role of the cell cycle in the regulation of apoptosis.\nThe cell cycle is a highly"
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-30B-A3B-Base", use_fast=False)
|
|
model = self.get_model()
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@require_bitsandbytes
|
|
@slow
|
|
@require_flash_attn
|
|
@pytest.mark.flash_attn_test
|
|
def test_model_15b_a2b_long_prompt(self):
|
|
EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
|
|
# An input with 4097 tokens that is above the size of the sliding window
|
|
input_ids = [1] + [306, 338] * 2048
|
|
model = Qwen3MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen3-30B-A3B-Base",
|
|
device_map="auto",
|
|
load_in_4bit=True,
|
|
attn_implementation="flash_attention_2",
|
|
)
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
@slow
|
|
@require_torch_sdpa
|
|
def test_model_15b_a2b_long_prompt_sdpa(self):
|
|
EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
|
|
# An input with 4097 tokens that is above the size of the sliding window
|
|
input_ids = [1] + [306, 338] * 2048
|
|
model = self.get_model()
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
EXPECTED_TEXT_COMPLETION = "To be or not to be: the role of the cell cycle in the regulation of apoptosis.\nThe cell cycle is a highly"
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-30B-A3B-Base", use_fast=False)
|
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@slow
|
|
def test_speculative_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = (
|
|
"To be or not to be: the role of the liver in the pathogenesis of obesity and type 2 diabetes.\nThe"
|
|
)
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-30B-A3B-Base", use_fast=False)
|
|
model = self.get_model()
|
|
assistant_model = model
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
set_seed(0)
|
|
generated_ids = model.generate(
|
|
input_ids, max_new_tokens=20, do_sample=True, temperature=0.3, assistant_model=assistant_model
|
|
)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|