transformers/tests/models/nemotron/test_modeling_nemotron.py
Yao Matrix a5a0c7b888
switch to device agnostic device calling for test cases (#38247)
* use device agnostic APIs in test cases

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add one more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* xpu now supports integer device id, aligning to CUDA behaviors

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update to use device_properties

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update comment

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 10:18:53 +02:00

163 lines
6.0 KiB
Python

# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Nemotron model."""
import unittest
from transformers import NemotronConfig, is_torch_available
from transformers.testing_utils import (
Expectations,
require_read_token,
require_torch,
require_torch_accelerator,
slow,
torch_device,
)
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
from ...test_configuration_common import ConfigTester
if is_torch_available():
import torch
from transformers import (
AutoTokenizer,
NemotronForCausalLM,
NemotronForQuestionAnswering,
NemotronForSequenceClassification,
NemotronForTokenClassification,
NemotronModel,
)
class NemotronModelTester(CausalLMModelTester):
if is_torch_available():
config_class = NemotronConfig
base_model_class = NemotronModel
causal_lm_class = NemotronForCausalLM
sequence_class = NemotronForSequenceClassification
token_class = NemotronForTokenClassification
@require_torch
class NemotronModelTest(CausalLMModelTest, unittest.TestCase):
model_tester_class = NemotronModelTester
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
# This is because we are hitting edge cases with the causal_mask buffer
model_split_percents = [0.5, 0.7, 0.8]
all_model_classes = (
(
NemotronModel,
NemotronForCausalLM,
NemotronForSequenceClassification,
NemotronForQuestionAnswering,
NemotronForTokenClassification,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": NemotronModel,
"text-classification": NemotronForSequenceClassification,
"text-generation": NemotronForCausalLM,
"zero-shot": NemotronForSequenceClassification,
"question-answering": NemotronForQuestionAnswering,
"token-classification": NemotronForTokenClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
fx_compatible = False
# used in `test_torch_compile_for_training`
_torch_compile_train_cls = NemotronForCausalLM if is_torch_available() else None
def setUp(self):
self.model_tester = NemotronModelTester(self)
self.config_tester = ConfigTester(self, config_class=NemotronConfig, hidden_size=37)
@unittest.skip("Eager and SDPA do not produce the same outputs, thus this test fails")
def test_model_outputs_equivalence(self, **kwargs):
pass
@require_torch_accelerator
class NemotronIntegrationTest(unittest.TestCase):
@slow
@require_read_token
def test_nemotron_8b_generation_sdpa(self):
text = ["What is the largest planet in solar system?"]
EXPECTED_TEXT = [
"What is the largest planet in solar system?\nAnswer: Jupiter\n\nWhat is the answer",
]
model_id = "thhaus/nemotron3-8b"
model = NemotronForCausalLM.from_pretrained(
model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(text, return_tensors="pt").to(torch_device)
output = model.generate(**inputs, do_sample=False, max_new_tokens=10)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT, output_text)
@slow
@require_read_token
def test_nemotron_8b_generation_eager(self):
text = ["What is the largest planet in solar system?"]
EXPECTED_TEXTS = Expectations(
{
("xpu", 3): [
"What is the largest planet in solar system?\nAnswer: Jupiter\n\nWhat is the answer: What is the name of the 19",
],
("cuda", 7): [
"What is the largest planet in solar system?\nAnswer: Jupiter\n\nWhat is the answer",
],
}
)
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
model_id = "thhaus/nemotron3-8b"
model = NemotronForCausalLM.from_pretrained(
model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="eager"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(text, return_tensors="pt").to(torch_device)
output = model.generate(**inputs, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT, output_text)
@slow
@require_read_token
def test_nemotron_8b_generation_fa2(self):
text = ["What is the largest planet in solar system?"]
EXPECTED_TEXT = [
"What is the largest planet in solar system?\nAnswer: Jupiter\n\nWhat is the answer",
]
model_id = "thhaus/nemotron3-8b"
model = NemotronForCausalLM.from_pretrained(
model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(text, return_tensors="pt").to(torch_device)
output = model.generate(**inputs, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT, output_text)