transformers/tests/models/mllama/test_processor_mllama.py

389 lines
16 KiB
Python

# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import shutil
import tempfile
import unittest
import numpy as np
from transformers import MllamaProcessor
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from PIL import Image
@require_torch
@require_vision
class MllamaProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = MllamaProcessor
@classmethod
def setUpClass(cls):
cls.checkpoint = "hf-internal-testing/mllama-11b"
processor = MllamaProcessor.from_pretrained(cls.checkpoint)
cls.image1 = Image.new("RGB", (224, 220))
cls.image2 = Image.new("RGB", (512, 128))
cls.image_token = processor.image_token
cls.image_token_id = processor.image_token_id
cls.pad_token_id = processor.tokenizer.pad_token_id
cls.bos_token = processor.bos_token
cls.bos_token_id = processor.tokenizer.bos_token_id
cls.tmpdirname = tempfile.mkdtemp()
processor.save_pretrained(cls.tmpdirname)
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
def prepare_processor_dict(self):
return {"chat_template": "{% for message in messages %}{% if loop.index0 == 0 %}{{ bos_token }}{% endif %}{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' }}{% if message['content'] is string %}{{ message['content'] }}{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' %}{{ '<|image|>' }}{% elif content['type'] == 'text' %}{{ content['text'] }}{% endif %}{% endfor %}{% endif %}{{ '<|eot_id|>' }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}"} # fmt: skip
def test_chat_template_is_saved(self):
processor_loaded = self.processor_class.from_pretrained(self.tmpdirname)
processor_dict_loaded = json.loads(processor_loaded.to_json_string())
# chat templates aren't serialized to json in processors
self.assertFalse("chat_template" in processor_dict_loaded.keys())
# they have to be saved as separate file and loaded back from that file
# so we check if the same template is loaded
processor_dict = self.prepare_processor_dict()
self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
def test_apply_chat_template(self):
# Message contains content which a mix of lists with images and image urls and string
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "image"},
{"type": "text", "text": "What do these images show?"},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "The first image shows the statue of Liberty in New York."},
],
},
{
"role": "user",
"content": [
{"type": "text", "text": "And who is that?"},
],
},
]
processor = MllamaProcessor.from_pretrained(self.tmpdirname)
rendered = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
expected_rendered = (
"<|begin_of_text|>"
"<|start_header_id|>user<|end_header_id|>\n\n"
"<|image|><|image|>What do these images show?"
"<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
"The first image shows the statue of Liberty in New York."
"<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n"
"And who is that?"
"<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
self.assertEqual(rendered, expected_rendered)
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "This is a test sentence."},
],
},
{
"role": "user",
"content": [
{"type": "text", "text": "This is a response."},
],
},
]
input_ids = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True)
expected_ids = [
[
128000, # <|begin_of_text|>
128006, # <|start_header_id|>
9125, # "system"
128007, # <|end_of_header|>
271, # "\n\n"
2028,
374,
264,
1296,
11914,
13, # "This is a test sentence."
128009, # <|eot_id|>
128006, # <|start_header_id|>
882, # "user"
128007, # <|end_of_header|>
271, # "\n\n"
2028,
374,
264,
2077,
13, # "This is a response.",
128009, # <|eot_id|>
128006, # <|start_header_id|>
78191, # "assistant"
128007, # <|end_of_header|>
271, # "\n\n"
]
]
self.assertEqual(input_ids, expected_ids)
# test image in multiple locations
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image in two sentences"},
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
{"type": "text", "text": " Test sentence "},
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
{"type": "text", "text": "ok\n"},
],
}
]
rendered = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
expected_rendered = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"
"Describe this image in two sentences<|image|> Test sentence <|image|>ok\n<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
self.assertEqual(rendered, expected_rendered)
input_ids = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True)
# fmt: off
expected_ids = [[
128000, 128006, 882, 128007, 271, 75885, 420, 2217, 304, 1403, 23719, 128256,
3475, 11914, 262, 128256, 564, 198, 128009, 128006, 78191, 128007, 271,
]]
# fmt: on
self.assertEqual(input_ids, expected_ids)
# text format for content
messages_list = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe this image in two sentences"},
],
}
]
messages_str = [
{
"role": "user",
"content": "<|image|>Describe this image in two sentences",
}
]
rendered_list = processor.apply_chat_template(messages_list, add_generation_prompt=True, tokenize=False)
rendered_str = processor.apply_chat_template(messages_str, add_generation_prompt=True, tokenize=False)
self.assertEqual(rendered_list, rendered_str)
def test_process_interleaved_images_prompts_image_splitting(self):
processor = MllamaProcessor.from_pretrained(self.tmpdirname)
# Test that a single image is processed correctly
inputs = processor(images=self.image2, size={"width": 224, "height": 224})
self.assertEqual(inputs["pixel_values"].shape, (1, 1, 4, 3, 224, 224))
# Test that text is processed correctly
text = "<|begin_of_text|>This is a test sentence.<|end_of_text|>"
inputs = processor(text=text)
expected_ids = [128000, 2028, 374, 264, 1296, 11914, 13, 128001]
self.assertEqual(inputs["input_ids"][0], expected_ids)
self.assertEqual(inputs["attention_mask"][0], [1] * len(expected_ids))
self.assertEqual(inputs.get("cross_attention_mask"), None)
# Test a single sample with image and text
image_str = "<|image|>"
text_str = "This is a test sentence."
text = image_str + text_str
inputs = processor(
text=text,
images=self.image1,
size={"width": 128, "height": 128},
)
expected_ids = [self.image_token_id, self.bos_token_id] + [2028, 374, 264, 1296, 11914, 13]
self.assertEqual(inputs["pixel_values"].shape, (1, 1, 4, 3, 128, 128))
self.assertEqual(inputs["input_ids"][0], expected_ids)
self.assertEqual(inputs["attention_mask"][0], [1] * len(expected_ids))
cross_attention_mask = inputs["cross_attention_mask"]
self.assertEqual(cross_attention_mask.shape, (1, 8, 1, 4))
self.assertTrue(
np.all(cross_attention_mask == 1), f"Cross attention mask is not all ones: {cross_attention_mask}"
)
# Test batch
text = [
"<|image|>This is a test sentence.",
"This is a test sentence.<|image|><|image|>This is a test sentence.",
]
# fmt: off
expected_ids = [
[self.image_token_id, self.bos_token_id, 2028, 374, 264, 1296, 11914, 13],
[self.bos_token_id, 2028, 374, 264, 1296, 11914, 13, self.image_token_id, self.image_token_id, 2028, 374, 264, 1296, 11914, 13],
]
# fmt: onn
images = [[self.image1], [self.image1, self.image2]]
inputs = processor(text=text, images=images, padding=True, size={"width": 256, "height": 256})
self.assertEqual(inputs["pixel_values"].shape, (2, 2, 4, 3, 256, 256))
for input_ids_i, attention_mask_i, expected_ids_i in zip(inputs["input_ids"], inputs["attention_mask"], expected_ids):
pad_ids = [id for id, m in zip(input_ids_i, attention_mask_i) if m == 0]
input_ids = [id for id, m in zip(input_ids_i, attention_mask_i) if m == 1]
self.assertEqual(input_ids, expected_ids_i)
self.assertEqual(pad_ids, [self.pad_token_id] * len(pad_ids))
cross_attention_mask = inputs["cross_attention_mask"]
self.assertEqual(cross_attention_mask.shape, (2, 15, 2, 4))
# Check that only first tile of first sample is attended to all text tokens
first_sample_mask = cross_attention_mask[0].copy()
first_image_first_tile_attention = first_sample_mask[:, :1, :1] # text tokens, images, tiles
self.assertTrue(np.all(first_image_first_tile_attention == 1), f"Cross attention mask is not all ones: {first_image_first_tile_attention}")
# zero out first tile of first image
first_image_first_tile_attention[:, :1, :1] = 0
self.assertTrue(np.all(first_image_first_tile_attention == 0), f"Cross attention mask is not all zeros: {first_image_first_tile_attention}")
# second sample
second_sample_mask = cross_attention_mask[1].copy()
first_image_first_tile_attention = second_sample_mask[7:, :1, :1] # text tokens, images, tiles
self.assertTrue(np.all(first_image_first_tile_attention == 1), f"Cross attention mask is not all ones: {first_image_first_tile_attention}")
second_image_two_tiles_attention = second_sample_mask[8:, 1:2, :2] # text tokens, images, tiles
self.assertTrue(np.all(second_image_two_tiles_attention == 1), f"Cross attention mask is not all ones: {second_image_two_tiles_attention}")
# zero out both images masks
second_sample_mask[7:, :1, :1] = 0
second_sample_mask[8:, 1:2, :2] = 0
self.assertTrue(np.all(second_sample_mask == 0), f"Cross attention mask is not all zeros: {second_sample_mask}")
def test_process_interleaved_images_prompts_image_error(self):
text = [
"This is a test sentence.",
"In this other sentence we try some good things",
]
processor = MllamaProcessor.from_pretrained(self.tmpdirname)
inputs = processor(text=text, images=None, padding=True)
self.assertIsNotNone(inputs["input_ids"])
text = [
"This is a test sentence.<|image|>",
"In this other sentence we try some good things",
]
with self.assertRaises(ValueError):
processor(text=text, images=None, padding=True)
images = [[self.image1], []]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
text = [
"This is a test sentence.<|image|>",
"In this other sentence we try some good things<|image|>",
]
with self.assertRaises(ValueError):
processor(text=text, images=None, padding=True)
text = [
"This is a test sentence.<|image|>",
"In this other sentence we try some good things<|image|>",
]
images = [[self.image1], [self.image2]]
inputs = processor(text=text, images=images, padding=True)
images = [[self.image1, self.image2], []]
with self.assertRaises(ValueError):
processor(text=text, images=None, padding=True)
# see https://github.com/huggingface/transformers/pull/35934
images = [self.image1, self.image2]
with self.assertRaises(ValueError):
processor(text=text, images=None, padding=True)
def test_unstructured_kwargs_batched(self):
# Overridden because Mllama expects images in nested format. For 2 images it can't infer
# the correct nesting, so we better throw an error
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor_kwargs = self.prepare_processor_dict()
processor = self.processor_class(**processor_components, **processor_kwargs)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs(batch_size=2, modality="image")
image_input = self.prepare_image_inputs(batch_size=2)
image_input = [[image_input[0]], [image_input[1]]]
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
do_rescale=True,
rescale_factor=-1,
padding="longest",
max_length=76,
)
self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0)
self.assertTrue(
len(inputs[self.text_input_name][0]) == len(inputs[self.text_input_name][1])
and len(inputs[self.text_input_name][1]) < 76
)
def test_special_mm_token_truncation(self):
"""Tests that special vision tokens do not get truncated when `truncation=True` is set."""
processor = self.get_processor()
input_str = self.prepare_text_inputs(batch_size=2, modality="image")
image_input = self.prepare_image_inputs(batch_size=2)
image_input = [[image_input[0]], [image_input[1]]]
_ = processor(
text=input_str,
images=image_input,
return_tensors="pt",
truncation=None,
padding=True,
)
with self.assertRaises(ValueError):
_ = processor(
text=input_str,
images=image_input,
return_tensors="pt",
truncation=True,
padding=True,
max_length=3,
)