mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* Protect ParallelInterface * early error out on output attention setting for no wraning in modeling * modular update * fixup * update model tests * update * oups * set model's config * more cases * ?? * properly fix * fixup * update * last onces * update * fix? * fix wrong merge commit * fix hub test * nits * wow I am tired * updates * fix pipeline! --------- Co-authored-by: Lysandre <hi@lysand.re>
632 lines
26 KiB
Python
632 lines
26 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Hiera model."""
|
|
|
|
import math
|
|
import unittest
|
|
|
|
from transformers import HieraConfig
|
|
from transformers.testing_utils import (
|
|
require_torch,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import (
|
|
cached_property,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
|
|
from ...test_backbone_common import BackboneTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import HieraBackbone, HieraForImageClassification, HieraForPreTraining, HieraModel
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import AutoImageProcessor
|
|
|
|
|
|
class HieraModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
image_size=[64, 64],
|
|
mlp_ratio=1.0,
|
|
num_channels=3,
|
|
depths=[1, 1, 1, 1],
|
|
patch_stride=[4, 4],
|
|
patch_size=[7, 7],
|
|
patch_padding=[3, 3],
|
|
masked_unit_size=[8, 8],
|
|
num_heads=[1, 1, 1, 1],
|
|
embed_dim_multiplier=2.0,
|
|
is_training=True,
|
|
use_labels=True,
|
|
embed_dim=8,
|
|
hidden_act="gelu",
|
|
decoder_hidden_size=2,
|
|
decoder_depth=1,
|
|
decoder_num_heads=1,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
type_sequence_label_size=10,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.mlp_ratio = mlp_ratio
|
|
self.num_channels = num_channels
|
|
self.depths = depths
|
|
self.patch_stride = patch_stride
|
|
self.patch_size = patch_size
|
|
self.patch_padding = patch_padding
|
|
self.masked_unit_size = masked_unit_size
|
|
self.num_heads = num_heads
|
|
self.embed_dim_multiplier = embed_dim_multiplier
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.embed_dim = embed_dim
|
|
self.hidden_act = hidden_act
|
|
self.decoder_hidden_size = decoder_hidden_size
|
|
self.decoder_depth = decoder_depth
|
|
self.decoder_num_heads = decoder_num_heads
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return HieraConfig(
|
|
embed_dim=self.embed_dim,
|
|
image_size=self.image_size,
|
|
patch_stride=self.patch_stride,
|
|
patch_size=self.patch_size,
|
|
patch_padding=self.patch_padding,
|
|
masked_unit_size=self.masked_unit_size,
|
|
mlp_ratio=self.mlp_ratio,
|
|
num_channels=self.num_channels,
|
|
depths=self.depths,
|
|
num_heads=self.num_heads,
|
|
embed_dim_multiplier=self.embed_dim_multiplier,
|
|
hidden_act=self.hidden_act,
|
|
decoder_hidden_size=self.decoder_hidden_size,
|
|
decoder_depth=self.decoder_depth,
|
|
decoder_num_heads=self.decoder_num_heads,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values, labels):
|
|
model = HieraModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
|
|
tokens_spatial_shape = [i // s for i, s in zip(self.image_size, config.patch_stride)]
|
|
expected_seq_len = math.prod(tokens_spatial_shape) // math.prod(config.query_stride) ** (config.num_query_pool)
|
|
expected_dim = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))
|
|
|
|
def create_and_check_backbone(self, config, pixel_values, labels):
|
|
model = HieraBackbone(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
|
|
# verify hidden states
|
|
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
|
|
num_patches = config.image_size[0] // config.patch_stride[0] // config.masked_unit_size[0]
|
|
self.parent.assertListEqual(
|
|
list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], num_patches, num_patches]
|
|
)
|
|
|
|
# verify channels
|
|
self.parent.assertEqual(len(model.channels), len(config.out_features))
|
|
|
|
# verify backbone works with out_features=None
|
|
config.out_features = None
|
|
model = HieraBackbone(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
|
|
# verify feature maps
|
|
self.parent.assertEqual(len(result.feature_maps), 1)
|
|
self.parent.assertListEqual(
|
|
list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], num_patches, num_patches]
|
|
)
|
|
|
|
# verify channels
|
|
self.parent.assertEqual(len(model.channels), 1)
|
|
|
|
def create_and_check_for_pretraining(self, config, pixel_values, labels):
|
|
model = HieraForPreTraining(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
pred_stride = config.patch_stride[-1] * (config.query_stride[-1] ** config.num_query_pool)
|
|
num_patches = self.image_size[0] // pred_stride
|
|
self.parent.assertEqual(
|
|
result.logits.shape, (self.batch_size, num_patches**2, self.num_channels * pred_stride**2)
|
|
)
|
|
|
|
# test greyscale images
|
|
config.num_channels = 1
|
|
model = HieraForPreTraining(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
pixel_values = floats_tensor([self.batch_size, 1, self.image_size[0], self.image_size[0]])
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches**2, pred_stride**2))
|
|
|
|
def create_and_check_for_image_classification(self, config, pixel_values, labels):
|
|
config.num_labels = self.type_sequence_label_size
|
|
model = HieraForImageClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values, labels=labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
|
|
|
# test greyscale images
|
|
config.num_channels = 1
|
|
model = HieraForImageClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
pixel_values = floats_tensor([self.batch_size, 1, self.image_size[0], self.image_size[0]])
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
pixel_values,
|
|
labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class HieraModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as Hiera does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (
|
|
(
|
|
HieraModel,
|
|
HieraBackbone,
|
|
HieraForImageClassification,
|
|
HieraForPreTraining,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{"image-feature-extraction": HieraModel, "image-classification": HieraForImageClassification}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
fx_compatible = True
|
|
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_torch_exportable = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = HieraModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=HieraConfig, has_text_modality=False)
|
|
|
|
def test_config(self):
|
|
self.config_tester.create_and_test_config_to_json_string()
|
|
self.config_tester.create_and_test_config_to_json_file()
|
|
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
|
self.config_tester.create_and_test_config_with_num_labels()
|
|
self.config_tester.check_config_can_be_init_without_params()
|
|
self.config_tester.check_config_arguments_init()
|
|
|
|
# Overriding as Hiera `get_input_embeddings` returns HieraPatchEmbeddings
|
|
def test_model_get_set_embeddings(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
# Overriding as attention shape depends on patch_stride and mask_unit_size
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class._from_config(config, attn_implementation="eager")
|
|
config = model.config
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
expected_num_attentions = len(self.model_tester.depths)
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
seq_len = math.prod([i // s for i, s in zip(config.image_size, config.patch_stride)])
|
|
mask_unit_area = math.prod(config.masked_unit_size)
|
|
num_windows = seq_len // mask_unit_area
|
|
if model_class.__name__ == "HieraForPreTraining":
|
|
num_windows = int(num_windows * (1 - config.mask_ratio))
|
|
seq_len = int(num_windows * mask_unit_area)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-4:]),
|
|
[self.model_tester.num_heads[0], num_windows, mask_unit_area, seq_len // num_windows],
|
|
)
|
|
out_len = len(outputs)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# also another +1 for reshaped_hidden_states
|
|
added_hidden_states = 1 if model_class.__name__ == "HieraBackbone" else 2
|
|
self.assertEqual(out_len + added_hidden_states, len(outputs))
|
|
|
|
self_attentions = outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), expected_num_attentions)
|
|
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-4:]),
|
|
[self.model_tester.num_heads[0], num_windows, mask_unit_area, seq_len // num_windows],
|
|
)
|
|
|
|
# Overriding as attention shape depends on patch_stride and mask_unit_size
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class, image_size):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.hidden_states
|
|
|
|
expected_num_layers = getattr(
|
|
self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
|
|
)
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
# Hiera has a different seq_length
|
|
patch_size = config.patch_stride
|
|
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
if model_class.__name__ == "HieraForPreTraining":
|
|
mask_unit_area = math.prod(config.masked_unit_size)
|
|
num_windows = num_patches // mask_unit_area
|
|
num_windows = int(num_windows * (1 - config.mask_ratio))
|
|
num_patches = int(num_windows * mask_unit_area)
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[num_patches, self.model_tester.embed_dim],
|
|
)
|
|
|
|
if not model_class.__name__ == "HieraBackbone":
|
|
reshaped_hidden_states = outputs.reshaped_hidden_states
|
|
self.assertEqual(len(reshaped_hidden_states), expected_num_layers)
|
|
|
|
batch_size = reshaped_hidden_states[0].shape[0]
|
|
num_channels = reshaped_hidden_states[0].shape[-1]
|
|
|
|
reshaped_hidden_states = reshaped_hidden_states[0].view(batch_size, -1, num_channels)
|
|
self.assertListEqual(
|
|
list(reshaped_hidden_states.shape[-2:]),
|
|
[num_patches, self.model_tester.embed_dim],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
image_size = self.model_tester.image_size
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class, image_size)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class, image_size)
|
|
|
|
# Overriding since HieraForPreTraining outputs bool_masked_pos which has to be converted to float in the msg
|
|
def test_model_outputs_equivalence(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def set_nan_tensor_to_zero(t):
|
|
t[t != t] = 0
|
|
return t
|
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
|
|
with torch.no_grad():
|
|
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
|
|
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, (list, tuple)):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif isinstance(tuple_object, dict):
|
|
for tuple_iterable_value, dict_iterable_value in zip(
|
|
tuple_object.values(), dict_object.values()
|
|
):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
else:
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
|
|
),
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {torch.max(torch.abs(tuple_object.float() - dict_object.float()))}. Tuple has `nan`:"
|
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
|
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
|
|
),
|
|
)
|
|
|
|
recursive_check(tuple_output, dict_output)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
additional_kwargs = {}
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
additional_kwargs["output_hidden_states"] = True
|
|
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
|
|
|
|
if self.has_attentions:
|
|
# Removing "output_hidden_states"
|
|
del additional_kwargs["output_hidden_states"]
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
additional_kwargs["output_attentions"] = True
|
|
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
additional_kwargs["output_hidden_states"] = True
|
|
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
|
|
|
|
@unittest.skip(reason="Hiera Transformer does not use feedforward chunking")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Hiera does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_backbone(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_backbone(*config_and_inputs)
|
|
|
|
def test_for_pretraining(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
|
|
|
|
def test_for_image_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in ["facebook/hiera-tiny-224-hf"]:
|
|
model = HieraModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class HieraModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return AutoImageProcessor.from_pretrained("facebook/hiera-tiny-224-in1k-hf") if is_vision_available() else None
|
|
|
|
@slow
|
|
def test_inference_image_classification_head(self):
|
|
model = HieraForImageClassification.from_pretrained("facebook/hiera-tiny-224-in1k-hf").to(torch_device)
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
expected_pixel_values = torch.tensor(
|
|
[
|
|
[[0.2967, 0.4679, 0.4508], [0.3309, 0.4337, 0.3309], [0.3309, 0.3823, 0.3309]],
|
|
[[-1.5455, -1.4930, -1.5455], [-1.5280, -1.4755, -1.5980], [-1.5630, -1.5280, -1.4755]],
|
|
[[-0.6367, -0.4973, -0.5321], [-0.7936, -0.6715, -0.6715], [-0.8284, -0.7413, -0.5670]],
|
|
]
|
|
).to(torch_device)
|
|
|
|
torch.testing.assert_close(inputs.pixel_values[0, :3, :3, :3], expected_pixel_values, rtol=1e-4, atol=1e-4)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 1000))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor([[0.8028, 0.2409, -0.2254, -0.3712, -0.2848]]).to(torch_device)
|
|
|
|
torch.testing.assert_close(outputs.logits[0, :5], expected_slice, rtol=1e-4, atol=1e-4)
|
|
|
|
def test_inference_interpolate_pos_encoding(self):
|
|
model = HieraModel.from_pretrained("facebook/hiera-tiny-224-hf").to(torch_device)
|
|
|
|
image_processor = AutoImageProcessor.from_pretrained(
|
|
"facebook/hiera-tiny-224-hf", size={"shortest_edge": 448}, crop_size={"height": 448, "width": 448}
|
|
)
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt")
|
|
pixel_values = inputs.pixel_values.to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(pixel_values, interpolate_pos_encoding=True)
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 196, 768))
|
|
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[1.7853, 0.0690, 0.3177], [2.6853, -0.2334, 0.0889], [1.5445, -0.1515, -0.0300]]
|
|
).to(torch_device)
|
|
|
|
torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
|
|
|
|
@slow
|
|
def test_inference_for_pretraining(self):
|
|
# make random mask reproducible
|
|
torch.manual_seed(2)
|
|
|
|
model = HieraForPreTraining.from_pretrained("facebook/hiera-tiny-224-mae-hf").to(torch_device)
|
|
image_processor = self.default_image_processor
|
|
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
config = model.config
|
|
mask_spatial_shape = [
|
|
i // s // ms for i, s, ms in zip(config.image_size, config.patch_stride, config.masked_unit_size)
|
|
]
|
|
num_windows = math.prod(mask_spatial_shape)
|
|
noise = torch.rand(1, num_windows).to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, noise=noise)
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 196, 768))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[
|
|
[1.6407, 1.6506, 1.6541, 1.6617, 1.6703],
|
|
[1.9730, 1.9842, 1.9848, 1.9896, 1.9947],
|
|
[1.5949, 1.8262, 1.2602, 1.4801, 1.4448],
|
|
[1.2341, 1.7907, 0.8618, 1.5202, 1.4523],
|
|
[2.0140, 1.9846, 1.9434, 1.9019, 1.8648],
|
|
]
|
|
)
|
|
|
|
torch.testing.assert_close(outputs.logits[0, :5, :5], expected_slice.to(torch_device), rtol=1e-4, atol=1e-4)
|
|
|
|
|
|
@require_torch
|
|
class HieraBackboneTest(unittest.TestCase, BackboneTesterMixin):
|
|
all_model_classes = (HieraBackbone,) if is_torch_available() else ()
|
|
config_class = HieraConfig
|
|
|
|
def setUp(self):
|
|
self.model_tester = HieraModelTester(self)
|