transformers/tests/models/granitemoeshared/test_modeling_granitemoeshared.py
Yao Matrix a5a0c7b888
switch to device agnostic device calling for test cases (#38247)
* use device agnostic APIs in test cases

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add one more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* xpu now supports integer device id, aligning to CUDA behaviors

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update to use device_properties

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update comment

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 10:18:53 +02:00

388 lines
17 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch GraniteMoeShared model."""
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GraniteMoeSharedConfig, is_torch_available, set_seed
from transformers.testing_utils import (
Expectations,
require_read_token,
require_torch,
require_torch_accelerator,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import (
GraniteMoeSharedForCausalLM,
GraniteMoeSharedModel,
)
from transformers.models.granitemoeshared.modeling_granitemoeshared import (
GraniteMoeSharedRotaryEmbedding,
)
class GraniteMoeSharedModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
shared_intermediate_size=174,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.shared_intermediate_size = shared_intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return GraniteMoeSharedConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
shared_intermediate_size=self.shared_intermediate_size,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = GraniteMoeSharedModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class GraniteMoeSharedModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
(
GraniteMoeSharedModel,
GraniteMoeSharedForCausalLM,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": GraniteMoeSharedModel,
"text-generation": GraniteMoeSharedForCausalLM,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
fx_compatible = False
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
# This is because we are hitting edge cases with the causal_mask buffer
model_split_percents = [0.5, 0.7, 0.8]
def setUp(self):
self.model_tester = GraniteMoeSharedModelTester(self)
self.config_tester = ConfigTester(self, config_class=GraniteMoeSharedConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
@parameterized.expand([("linear",), ("dynamic",)])
def test_model_rope_scaling_from_config(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = GraniteMoeSharedModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = GraniteMoeSharedModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
def test_model_rope_scaling(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
scaling_factor = 10
short_input_length = 10
long_input_length = int(config.max_position_embeddings * 1.5)
# Inputs
x = torch.randn(
1, dtype=torch.float32, device=torch_device
) # used exclusively to get the dtype and the device
position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device)
position_ids_short = position_ids_short.unsqueeze(0)
position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device)
position_ids_long = position_ids_long.unsqueeze(0)
# Sanity check original RoPE
original_rope = GraniteMoeSharedRotaryEmbedding(config=config).to(torch_device)
original_cos_short, original_sin_short = original_rope(x, position_ids_short)
original_cos_long, original_sin_long = original_rope(x, position_ids_long)
torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :])
torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :])
# Sanity check linear RoPE scaling
# New position "x" should match original position with index "x/scaling_factor"
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
linear_scaling_rope = GraniteMoeSharedRotaryEmbedding(config=config).to(torch_device)
linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short)
linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long)
torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :])
torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :])
for new_position in range(0, long_input_length, scaling_factor):
original_position = int(new_position // scaling_factor)
torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :])
torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :])
# Sanity check Dynamic NTK RoPE scaling
# Scaling should only be observed after a long input is fed. We can observe that the frequencies increase
# with scaling_factor (or that `inv_freq` decreases)
config.rope_scaling = {"type": "dynamic", "factor": scaling_factor}
ntk_scaling_rope = GraniteMoeSharedRotaryEmbedding(config=config).to(torch_device)
ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short)
ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long)
torch.testing.assert_close(ntk_cos_short, original_cos_short)
torch.testing.assert_close(ntk_sin_short, original_sin_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_cos_long, original_cos_long)
with self.assertRaises(AssertionError):
torch.testing.assert_close(ntk_sin_long, original_sin_long)
self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all())
# Sanity check Yarn RoPE scaling
# Scaling should be over the entire input
config.rope_scaling = {"type": "yarn", "factor": scaling_factor}
yarn_scaling_rope = GraniteMoeSharedRotaryEmbedding(config=config).to(torch_device)
yarn_cos_short, yarn_sin_short = yarn_scaling_rope(x, position_ids_short)
yarn_cos_long, yarn_sin_long = yarn_scaling_rope(x, position_ids_long)
torch.testing.assert_close(yarn_cos_short, yarn_cos_long[:, :short_input_length, :])
torch.testing.assert_close(yarn_sin_short, yarn_sin_long[:, :short_input_length, :])
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_cos_short, original_cos_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_sin_short, original_sin_short)
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_cos_long, original_cos_long)
with self.assertRaises(AssertionError):
torch.testing.assert_close(yarn_sin_long, original_sin_long)
@require_torch_accelerator
class GraniteMoeSharedIntegrationTest(unittest.TestCase):
@slow
@require_read_token
def test_model_3b_logits(self):
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
model = GraniteMoeSharedForCausalLM.from_pretrained("ibm/PowerMoE-3b", device_map="auto")
with torch.no_grad():
out = model(torch.tensor([input_ids]).to(torch_device))
# fmt: off
# Expected mean on dim = -1
EXPECTED_MEANS = Expectations(
{
("xpu", 3): torch.tensor([[-4.4005, -3.6689, -3.6187, -2.8308, -3.9871, -3.1001, -2.8738, -2.8063]]),
("cuda", 7): torch.tensor([[-2.2122, -1.6632, -2.9269, -2.3344, -2.0143, -3.0146, -2.6839, -2.5610]]),
("cuda", 8): torch.tensor([[-4.4005, -3.6689, -3.6187, -2.8308, -3.9871, -3.1001, -2.8738, -2.8063]]),
}
)
EXPECTED_MEAN = EXPECTED_MEANS.get_expectation()
torch.testing.assert_close(EXPECTED_MEAN.to(torch_device), out.logits.float().mean(-1), rtol=1e-2, atol=1e-2)
# slicing logits[0, 0, 0:15]
EXPECTED_SLICES = Expectations(
{
("xpu", 3): torch.tensor([[2.5479, -9.2123, -9.2121, -9.2175, -9.2122, -1.5024, -9.2121, -9.2122, -9.2161, -9.2122, -6.3100, -3.6223, -3.6377, -5.2542, -5.2523]]),
("cuda", 7): torch.tensor([[4.8785, -2.2890, -2.2892, -2.2885, -2.2890, -3.5007, -2.2897, -2.2892, -2.2895, -2.2891, -2.2887, -2.2882, -2.2889, -2.2898, -2.2892]]),
("cuda", 8): torch.tensor([[2.5479, -9.2123, -9.2121, -9.2175, -9.2122, -1.5024, -9.2121, -9.2122, -9.2161, -9.2122, -6.3100, -3.6223, -3.6377, -5.2542, -5.2523]]),
}
)
EXPECTED_SLICE = EXPECTED_SLICES.get_expectation()
# fmt: on
self.assertTrue(
torch.allclose(
EXPECTED_SLICE.to(torch_device),
out.logits[0, 0, :15].float(),
atol=1e-3,
rtol=1e-3,
)
)
@slow
def test_model_3b_generation(self):
# ground truth text generated with dola_layers="low", repetition_penalty=1.2
# fmt: off
EXPECTED_TEXT_COMPLETIONS = Expectations(
{
("xpu", 3): (
"Simply put, the theory of relativity states that 1) the speed of light is constant, and 2) the speed of light is the same for all observers.\n\n"
"The first part is easy to understand. The second part is a little more difficult.\n\n"
"The second part of the theory of relativity is a little more difficult to understand.\n"
),
("cuda", 7): (
"Simply put, the theory of relativity states that \n$$\n\\frac{d^2x^\\mu}{d\\tau^2} = "
"\\frac{1}{c^2}\\frac{d^2x^\\mu}{dt^2}\n$$\nwhere $x^\\mu$ is a four-vector, $\\tau$ is the proper time"
),
("cuda", 8): (
"Simply put, the theory of relativity states that 1) the speed of light is constant, and 2) the speed of light is the same for all observers.\n\n"
"The first part is easy to understand. The second part is a little more difficult.\n\n"
"The second part of the theory of relativity is a little more difficult to understand.\n"
),
}
)
# fmt: on
EXPECTED_TEXT_COMPLETION = EXPECTED_TEXT_COMPLETIONS.get_expectation()
prompt = "Simply put, the theory of relativity states that "
tokenizer = AutoTokenizer.from_pretrained("ibm/PowerMoE-3b")
model = GraniteMoeSharedForCausalLM.from_pretrained("ibm/PowerMoE-3b", device_map="auto")
model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# greedy generation outputs
generated_ids = model.generate(**model_inputs, max_new_tokens=64, top_p=None, temperature=1, do_sample=False)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)