transformers/tests/models/flaubert/test_tokenization_flaubert.py
cyyever 1e6b546ea6
Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00

76 lines
3.3 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the FlauBERT tokenizer."""
import json
import os
import unittest
from transformers import FlaubertTokenizer
from transformers.models.flaubert.tokenization_flaubert import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class FlaubertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "flaubert/flaubert_base_cased"
tokenizer_class = FlaubertTokenizer
test_rust_tokenizer = False
@classmethod
def setUpClass(cls):
super().setUpClass()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "i</w>", "lo", "low", "ne", "new", "er</w>", "low</w>", "lowest</w>", "new</w>", "newer</w>", "wider</w>", "<unk>"] # fmt: skip
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["n e 300", "ne w 301", "e r</w> 302", ""]
cls.vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
cls.merges_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(cls.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(cls.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
# Copied from transformers.tests.models.xlm.test_tokenization_xlm.XLMTokenizationTest.test_full_tokenizer
def test_full_tokenizer(self):
tokenizer = self.get_tokenizer()
text = "lower newer"
bpe_tokens = ["l", "o", "w", "er</w>", "new", "er</w>"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [0, 1, 2, 18, 17, 18, 24]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
@slow
# Copied from transformers.tests.models.xlm.test_tokenization_xlm.XLMTokenizationTest.test_sequence_builders
def test_sequence_builders(self):
tokenizer = FlaubertTokenizer.from_pretrained("flaubert/flaubert_base_cased")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
print(encoded_sentence)
print(encoded_sentence)
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_2 + [1]