mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 14:50:07 +06:00

* Use torch.nn.attention.sdpa_kernel instead of deprecated torch.backends.cuda.sdp_kernel Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> * Fix test_eager_matches_sdpa_inference for XPU backend As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH which is implemented on PyTorch level using aten operators and is device agnostic with respect to implementation of each aten operator. Thus, we can reuse CUDA (or CPU) MATH weights for XPU. Fixes: #34888 Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> * Use torch.amp.autocast instead of deprecated torch.cuda.amp.autocast in nemotron Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> --------- Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
865 lines
40 KiB
Python
865 lines
40 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Mimi model."""
|
|
|
|
import inspect
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
from datasets import Audio, load_dataset
|
|
from parameterized import parameterized
|
|
from pytest import mark
|
|
|
|
from transformers import AutoFeatureExtractor, MimiConfig
|
|
from transformers.testing_utils import (
|
|
is_flaky,
|
|
is_torch_available,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import (
|
|
is_torch_bf16_available_on_device,
|
|
is_torch_fp16_available_on_device,
|
|
)
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, sdpa_kernel
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import MimiModel
|
|
|
|
|
|
# Copied from transformers.tests.encodec.test_modeling_encodec.prepare_inputs_dict
|
|
def prepare_inputs_dict(
|
|
config,
|
|
input_ids=None,
|
|
input_values=None,
|
|
decoder_input_ids=None,
|
|
attention_mask=None,
|
|
decoder_attention_mask=None,
|
|
head_mask=None,
|
|
decoder_head_mask=None,
|
|
cross_attn_head_mask=None,
|
|
):
|
|
if input_ids is not None:
|
|
encoder_dict = {"input_ids": input_ids}
|
|
else:
|
|
encoder_dict = {"input_values": input_values}
|
|
|
|
decoder_dict = {"decoder_input_ids": decoder_input_ids} if decoder_input_ids is not None else {}
|
|
|
|
return {**encoder_dict, **decoder_dict}
|
|
|
|
|
|
@require_torch
|
|
class MimiModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=5,
|
|
num_channels=1,
|
|
is_training=False,
|
|
intermediate_size=40,
|
|
hidden_size=32,
|
|
num_filters=8,
|
|
num_residual_layers=1,
|
|
upsampling_ratios=[8, 4],
|
|
codebook_size=64,
|
|
vector_quantization_hidden_dimension=64,
|
|
codebook_dim=64,
|
|
upsample_groups=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
num_key_value_heads=2,
|
|
sliding_window=4,
|
|
use_cache=False,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_size = hidden_size
|
|
self.num_filters = num_filters
|
|
self.num_residual_layers = num_residual_layers
|
|
self.upsampling_ratios = upsampling_ratios
|
|
self.codebook_size = codebook_size
|
|
self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension
|
|
self.codebook_dim = codebook_dim
|
|
self.upsample_groups = upsample_groups
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.sliding_window = sliding_window
|
|
self.use_cache = use_cache
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
|
|
config = self.get_config()
|
|
inputs_dict = {"input_values": input_values}
|
|
return config, inputs_dict
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, inputs_dict = self.prepare_config_and_inputs()
|
|
return config, inputs_dict
|
|
|
|
def prepare_config_and_inputs_for_model_class(self, model_class):
|
|
config, inputs_dict = self.prepare_config_and_inputs()
|
|
inputs_dict["audio_codes"] = ids_tensor([self.batch_size, 1, self.num_channels], self.codebook_size).type(
|
|
torch.int32
|
|
)
|
|
|
|
return config, inputs_dict
|
|
|
|
def get_config(self):
|
|
return MimiConfig(
|
|
audio_channels=self.num_channels,
|
|
chunk_in_sec=None,
|
|
hidden_size=self.hidden_size,
|
|
num_filters=self.num_filters,
|
|
num_residual_layers=self.num_residual_layers,
|
|
upsampling_ratios=self.upsampling_ratios,
|
|
codebook_size=self.codebook_size,
|
|
vector_quantization_hidden_dimension=self.vector_quantization_hidden_dimension,
|
|
upsample_groups=self.upsample_groups,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_key_value_heads=self.num_key_value_heads,
|
|
sliding_window=self.sliding_window,
|
|
codebook_dim=self.codebook_dim,
|
|
use_cache=self.use_cache,
|
|
)
|
|
|
|
def create_and_check_model_forward(self, config, inputs_dict):
|
|
model = MimiModel(config=config).to(torch_device).eval()
|
|
|
|
input_values = inputs_dict["input_values"]
|
|
result = model(input_values)
|
|
self.parent.assertEqual(
|
|
result.audio_values.shape, (self.batch_size, self.num_channels, self.intermediate_size)
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class MimiModelTest(ModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (MimiModel,) if is_torch_available() else ()
|
|
is_encoder_decoder = True
|
|
test_pruning = False
|
|
test_headmasking = False
|
|
test_resize_embeddings = False
|
|
test_torchscript = False
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
# model does support returning hidden states
|
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
|
if "output_attentions" in inputs_dict:
|
|
inputs_dict.pop("output_attentions")
|
|
if "output_hidden_states" in inputs_dict:
|
|
inputs_dict.pop("output_hidden_states")
|
|
return inputs_dict
|
|
|
|
def setUp(self):
|
|
self.model_tester = MimiModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=MimiConfig, hidden_size=37, common_properties=[], has_text_modality=False
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model_forward(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_forward(*config_and_inputs)
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["input_values", "padding_mask", "num_quantizers"]
|
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
|
|
|
|
@unittest.skip(reason="The MimiModel does not have `inputs_embeds` logics")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="The MimiModel does not have `inputs_embeds` logics")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
|
|
def test_torchscript_output_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="The MimiModel does not have the usual `hidden_states` logic")
|
|
def test_torchscript_output_hidden_state(self):
|
|
pass
|
|
|
|
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest._create_and_check_torchscript
|
|
def _create_and_check_torchscript(self, config, inputs_dict):
|
|
if not self.test_torchscript:
|
|
self.skipTest(reason="test_torchscript is set to False")
|
|
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init.torchscript = True
|
|
configs_no_init.return_dict = False
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
main_input_name = model_class.main_input_name
|
|
|
|
try:
|
|
main_input = inputs[main_input_name]
|
|
model(main_input)
|
|
traced_model = torch.jit.trace(model, main_input)
|
|
except RuntimeError:
|
|
self.fail("Couldn't trace module.")
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
|
|
|
|
try:
|
|
torch.jit.save(traced_model, pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't save module.")
|
|
|
|
try:
|
|
loaded_model = torch.jit.load(pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't load module.")
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
loaded_model.to(torch_device)
|
|
loaded_model.eval()
|
|
|
|
model_state_dict = model.state_dict()
|
|
loaded_model_state_dict = loaded_model.state_dict()
|
|
|
|
non_persistent_buffers = {}
|
|
for key in loaded_model_state_dict.keys():
|
|
if key not in model_state_dict.keys():
|
|
non_persistent_buffers[key] = loaded_model_state_dict[key]
|
|
|
|
loaded_model_state_dict = {
|
|
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
|
|
}
|
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
|
|
|
|
model_buffers = list(model.buffers())
|
|
for non_persistent_buffer in non_persistent_buffers.values():
|
|
found_buffer = False
|
|
for i, model_buffer in enumerate(model_buffers):
|
|
if torch.equal(non_persistent_buffer, model_buffer):
|
|
found_buffer = True
|
|
break
|
|
|
|
self.assertTrue(found_buffer)
|
|
model_buffers.pop(i)
|
|
|
|
model_buffers = list(model.buffers())
|
|
for non_persistent_buffer in non_persistent_buffers.values():
|
|
found_buffer = False
|
|
for i, model_buffer in enumerate(model_buffers):
|
|
if torch.equal(non_persistent_buffer, model_buffer):
|
|
found_buffer = True
|
|
break
|
|
|
|
self.assertTrue(found_buffer)
|
|
model_buffers.pop(i)
|
|
|
|
models_equal = True
|
|
for layer_name, p1 in model_state_dict.items():
|
|
if layer_name in loaded_model_state_dict:
|
|
p2 = loaded_model_state_dict[layer_name]
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
|
|
# (Even with this call, there are still memory leak by ~0.04MB)
|
|
self.clear_torch_jit_class_registry()
|
|
|
|
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
|
|
def test_attention_outputs(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="The MimiModel does not have the usual `hidden_states` logic")
|
|
def test_hidden_states_output(self):
|
|
pass
|
|
|
|
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_determinism
|
|
def test_determinism(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def check_determinism(first, second):
|
|
# outputs are not tensors but list (since each sequence don't have the same frame_length)
|
|
out_1 = first.cpu().numpy()
|
|
out_2 = second.cpu().numpy()
|
|
out_1 = out_1[~np.isnan(out_1)]
|
|
out_2 = out_2[~np.isnan(out_2)]
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
|
|
if isinstance(first, tuple) and isinstance(second, tuple):
|
|
for tensor1, tensor2 in zip(first, second):
|
|
check_determinism(tensor1, tensor2)
|
|
else:
|
|
check_determinism(first, second)
|
|
|
|
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_model_outputs_equivalence
|
|
def test_model_outputs_equivalence(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def set_nan_tensor_to_zero(t):
|
|
t[t != t] = 0
|
|
return t
|
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
|
|
with torch.no_grad():
|
|
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
|
|
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs)
|
|
|
|
self.assertTrue(isinstance(tuple_output, tuple))
|
|
self.assertTrue(isinstance(dict_output, dict))
|
|
|
|
for tuple_value, dict_value in zip(tuple_output, dict_output.values()):
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
set_nan_tensor_to_zero(tuple_value), set_nan_tensor_to_zero(dict_value), atol=1e-5
|
|
),
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {torch.max(torch.abs(tuple_value - dict_value))}. Tuple has `nan`:"
|
|
f" {torch.isnan(tuple_value).any()} and `inf`: {torch.isinf(tuple_value)}. Dict has"
|
|
f" `nan`: {torch.isnan(dict_value).any()} and `inf`: {torch.isinf(dict_value)}."
|
|
),
|
|
)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
uniform_init_parms = ["conv", "input_proj", "output_proj"]
|
|
if param.requires_grad:
|
|
if any(x in name for x in uniform_init_parms):
|
|
self.assertTrue(
|
|
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_identity_shortcut
|
|
def test_identity_shortcut(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
|
config.use_conv_shortcut = False
|
|
self.model_tester.create_and_check_model_forward(config, inputs_dict)
|
|
|
|
# Overwrite to use `audio_values` as the tensors to compare.
|
|
# TODO: Try to do this in the parent class.
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
if torch_dtype == "float16" and torch_device == "cpu":
|
|
self.skipTest("`replication_pad1d` not implemented for 'Half")
|
|
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
if not self.all_model_classes[0]._supports_sdpa:
|
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
|
|
|
|
if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
|
|
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
|
|
|
|
if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
|
|
self.skipTest(
|
|
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
|
|
)
|
|
|
|
# Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
|
|
if torch_dtype == "float16":
|
|
torch_dtype = torch.float16
|
|
elif torch_dtype == "bfloat16":
|
|
torch_dtype = torch.bfloat16
|
|
elif torch_dtype == "float32":
|
|
torch_dtype = torch.float32
|
|
|
|
atols = {
|
|
("cpu", False, torch.float32): 1e-6,
|
|
("cpu", False, torch.bfloat16): 1e-2,
|
|
("cpu", True, torch.float32): 1e-6,
|
|
("cpu", True, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float32): 1e-6,
|
|
("cuda", False, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float16): 5e-3,
|
|
("cuda", True, torch.float32): 1e-6,
|
|
("cuda", True, torch.bfloat16): 1e-2,
|
|
("cuda", True, torch.float16): 5e-3,
|
|
}
|
|
rtols = {
|
|
("cpu", False, torch.float32): 1e-4,
|
|
("cpu", False, torch.bfloat16): 1e-2,
|
|
("cpu", True, torch.float32): 1e-4,
|
|
("cpu", True, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float32): 1e-4,
|
|
("cuda", False, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float16): 5e-3,
|
|
("cuda", True, torch.float32): 1e-4,
|
|
("cuda", True, torch.bfloat16): 3e-2,
|
|
("cuda", True, torch.float16): 5e-3,
|
|
}
|
|
|
|
def get_mean_reldiff(failcase, x, ref, atol, rtol):
|
|
return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
# FIXME: we deactivate boolean mask for models using "use_mask_token" in their constructors.
|
|
# These models support masking only in the case `use_mask_token=True`. Otherwise they cannot consume an input mask.
|
|
# This means that the class needs to be instantiated much later, after `use_mask` is set, which means a significant refactor of the code.
|
|
# However masking there is not done at any layers that matters (i.e self-attention), therefore we can safely deactivate it.
|
|
deactivate_mask = "use_mask_token" in inspect.signature(model_class).parameters
|
|
|
|
is_encoder_decoder = model.config.is_encoder_decoder
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
|
|
|
|
model_eager = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch_dtype,
|
|
attn_implementation="eager",
|
|
)
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
raise ValueError("The eager model should not have SDPA attention layers")
|
|
|
|
has_sdpa = False
|
|
for name, submodule in model_sdpa.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
has_sdpa = True
|
|
break
|
|
if not has_sdpa and model_sdpa.config.model_type != "falcon":
|
|
raise ValueError("The SDPA model should have SDPA attention layers")
|
|
|
|
# We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
|
|
# but it would be nicer to have an efficient way to use parameterized.expand
|
|
fail_cases = []
|
|
for padding_side in ["left", "right"]:
|
|
for use_mask in [False, True]:
|
|
for output_attentions in [True, False]:
|
|
can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
|
|
if not (self.has_attentions and can_output_attn) and output_attentions:
|
|
continue
|
|
for batch_size in [7]:
|
|
dummy_input = inputs_dict[model.main_input_name]
|
|
|
|
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
|
|
dummy_input = dummy_input.to(torch_dtype)
|
|
|
|
dummy_input = dummy_input[:batch_size]
|
|
if dummy_input.shape[0] != batch_size:
|
|
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
|
|
extension = torch.rand(
|
|
batch_size - dummy_input.shape[0],
|
|
*dummy_input.shape[1:],
|
|
dtype=torch_dtype,
|
|
device=torch_device,
|
|
)
|
|
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
|
|
else:
|
|
extension = torch.randint(
|
|
high=5,
|
|
size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
|
|
dtype=dummy_input.dtype,
|
|
device=torch_device,
|
|
)
|
|
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
|
|
|
|
if not use_mask:
|
|
dummy_attention_mask = None
|
|
else:
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", None)
|
|
if dummy_attention_mask is None:
|
|
if is_encoder_decoder:
|
|
seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
|
|
else:
|
|
seqlen = dummy_input.shape[-1]
|
|
dummy_attention_mask = (
|
|
torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
|
|
)
|
|
|
|
dummy_attention_mask = dummy_attention_mask[:batch_size]
|
|
if dummy_attention_mask.shape[0] != batch_size:
|
|
extension = torch.ones(
|
|
batch_size - dummy_attention_mask.shape[0],
|
|
*dummy_attention_mask.shape[1:],
|
|
dtype=dummy_attention_mask.dtype,
|
|
device=torch_device,
|
|
)
|
|
dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
|
|
dummy_attention_mask = dummy_attention_mask.to(torch_device)
|
|
|
|
dummy_attention_mask[:] = 1
|
|
if padding_side == "left":
|
|
dummy_attention_mask[-1, :2] = 0
|
|
dummy_attention_mask[-1, 2:] = 1
|
|
elif padding_side == "right":
|
|
dummy_attention_mask[-1, -2:] = 0
|
|
dummy_attention_mask[-1, :-2] = 1
|
|
|
|
for enable_kernels in [False, True]:
|
|
failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
|
|
if is_encoder_decoder:
|
|
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[
|
|
:batch_size
|
|
]
|
|
if decoder_input_ids.shape[0] != batch_size:
|
|
extension = torch.ones(
|
|
batch_size - decoder_input_ids.shape[0],
|
|
*decoder_input_ids.shape[1:],
|
|
dtype=decoder_input_ids.dtype,
|
|
device=torch_device,
|
|
)
|
|
decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
|
|
decoder_input_ids = decoder_input_ids.to(torch_device)
|
|
|
|
# TODO: never an `attention_mask` arg here?
|
|
processed_inputs = {
|
|
model.main_input_name: dummy_input,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": dummy_attention_mask,
|
|
"output_hidden_states": True,
|
|
}
|
|
else:
|
|
processed_inputs = {
|
|
model.main_input_name: dummy_input,
|
|
"output_hidden_states": True,
|
|
}
|
|
|
|
# Otherwise fails for e.g. WhisperEncoderModel
|
|
if "attention_mask" in inspect.signature(model_eager.forward).parameters:
|
|
processed_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
if (
|
|
self.has_attentions
|
|
and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
|
|
):
|
|
processed_inputs["output_attentions"] = output_attentions
|
|
if not deactivate_mask and (
|
|
"bool_masked_pos" in inspect.signature(model_eager.forward).parameters
|
|
):
|
|
dummy_mask = torch.ones((self.model_tester.num_masks,))
|
|
|
|
# In case of additional token (like class) we define a custom `mask_length`
|
|
if hasattr(self.model_tester, "mask_length"):
|
|
mask_length = self.model_tester.mask_length - dummy_mask.size(0)
|
|
else:
|
|
mask_length = self.model_tester.seq_length - dummy_mask.size(0)
|
|
dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
|
|
dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
|
|
processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)
|
|
|
|
if "noise" in inspect.signature(model_eager.forward).parameters:
|
|
np.random.seed(2)
|
|
num_patches = int(
|
|
(self.model_tester.image_size // self.model_tester.patch_size) ** 2
|
|
)
|
|
noise = np.random.uniform(size=(batch_size, num_patches))
|
|
processed_inputs["noise"] = torch.from_numpy(noise)
|
|
|
|
# TODO: test gradients as well (& for FA2 as well!)
|
|
with torch.no_grad():
|
|
with sdpa_kernel(
|
|
enable_flash=enable_kernels,
|
|
enable_math=True,
|
|
enable_mem_efficient=enable_kernels,
|
|
):
|
|
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
|
|
outputs_eager = model_eager(**prepared_inputs)
|
|
outputs_sdpa = model_sdpa(**prepared_inputs)
|
|
|
|
# Ignore copy
|
|
logits_eager = outputs_eager.audio_values
|
|
# Ignore copy
|
|
logits_sdpa = outputs_sdpa.audio_values
|
|
|
|
if torch_device in ["cpu", "cuda"]:
|
|
atol = atols[torch_device, enable_kernels, torch_dtype]
|
|
rtol = rtols[torch_device, enable_kernels, torch_dtype]
|
|
elif torch_device == "xpu":
|
|
# As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH
|
|
# which is implemented on PyTorch level using aten operators and is
|
|
# device agnostic with respect to implementation of each aten operator.
|
|
atol = atols["cuda", False, torch_dtype]
|
|
rtol = rtols["cuda", False, torch_dtype]
|
|
else:
|
|
atol = 1e-7
|
|
rtol = 1e-4
|
|
|
|
# Masked tokens output slightly deviates - we don't mind that.
|
|
if use_mask:
|
|
_logits_sdpa = torch.zeros_like(input=logits_sdpa)
|
|
_logits_eager = torch.zeros_like(input=logits_eager)
|
|
|
|
_logits_sdpa[:-1] = logits_sdpa[:-1]
|
|
_logits_eager[:-1] = logits_eager[:-1]
|
|
|
|
if padding_side == "left":
|
|
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, 2:]
|
|
_logits_eager[-1:, 2:] = logits_eager[-1:, 2:]
|
|
|
|
elif padding_side == "right":
|
|
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, :-2]
|
|
_logits_eager[-1:, 2:] = logits_eager[-1:, :-2]
|
|
|
|
logits_sdpa = _logits_sdpa
|
|
logits_eager = _logits_eager
|
|
|
|
results = [
|
|
torch.allclose(_logits_sdpa, _logits_eager, atol=atol, rtol=rtol)
|
|
for (_logits_sdpa, _logits_eager) in zip(logits_sdpa, logits_eager)
|
|
]
|
|
# If 80% batch elements have matched results, it's fine
|
|
if np.mean(results) < 0.8:
|
|
fail_cases.append(
|
|
get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
|
|
)
|
|
|
|
self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
@slow
|
|
@is_flaky()
|
|
def test_flash_attn_2_inference_equivalence(self):
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_fa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
|
|
)
|
|
model_fa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
|
|
model.to(torch_device)
|
|
|
|
dummy_input = inputs_dict[model.main_input_name][:1]
|
|
if dummy_input.dtype in [torch.float32, torch.float16]:
|
|
dummy_input = dummy_input.to(torch.bfloat16)
|
|
|
|
outputs = model(dummy_input)
|
|
outputs_fa = model_fa(dummy_input)
|
|
|
|
logits = outputs[1]
|
|
logits_fa = outputs_fa[1]
|
|
|
|
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
|
|
|
|
@unittest.skip(reason="The MimiModel does not support right padding")
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="The MimiModel does not have support dynamic compile yet")
|
|
def test_sdpa_can_compile_dynamic(self):
|
|
pass
|
|
|
|
@is_flaky()
|
|
def test_batching_equivalence(self):
|
|
super().test_batching_equivalence()
|
|
|
|
|
|
# Copied from transformers.tests.encodec.test_modeling_encodec.normalize
|
|
def normalize(arr):
|
|
norm = np.linalg.norm(arr)
|
|
normalized_arr = arr / norm
|
|
return normalized_arr
|
|
|
|
|
|
# Copied from transformers.tests.encodec.test_modeling_encodec.compute_rmse
|
|
def compute_rmse(arr1, arr2):
|
|
arr1_normalized = normalize(arr1)
|
|
arr2_normalized = normalize(arr2)
|
|
return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())
|
|
|
|
|
|
@slow
|
|
@require_torch
|
|
class MimiIntegrationTest(unittest.TestCase):
|
|
def test_integration_using_cache_decode(self):
|
|
expected_rmse = {
|
|
"8": 0.0018785292,
|
|
"32": 0.0012330565,
|
|
}
|
|
|
|
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
|
|
model_id = "kyutai/mimi"
|
|
|
|
model = MimiModel.from_pretrained(model_id, use_cache=True).to(torch_device)
|
|
processor = AutoFeatureExtractor.from_pretrained(model_id)
|
|
|
|
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
|
|
audio_sample = librispeech_dummy[-1]["audio"]["array"]
|
|
|
|
inputs = processor(
|
|
raw_audio=audio_sample,
|
|
sampling_rate=processor.sampling_rate,
|
|
return_tensors="pt",
|
|
).to(torch_device)
|
|
|
|
for num_codebooks, expected_rmse in expected_rmse.items():
|
|
with torch.no_grad():
|
|
# use max bandwith for best possible reconstruction
|
|
encoder_outputs = model.encode(inputs["input_values"], num_quantizers=int(num_codebooks))
|
|
|
|
audio_codes = encoder_outputs[0]
|
|
|
|
decoder_outputs_first_part = model.decode(audio_codes[:, :, : audio_codes.shape[2] // 2])
|
|
decoder_outputs_second_part = model.decode(
|
|
audio_codes[:, :, audio_codes.shape[2] // 2 :],
|
|
decoder_past_key_values=decoder_outputs_first_part.decoder_past_key_values,
|
|
)
|
|
|
|
audio_output_entire_context = model.decode(audio_codes)[0]
|
|
audio_output_concat_context = torch.cat(
|
|
[decoder_outputs_first_part[0], decoder_outputs_second_part[0]], dim=2
|
|
)
|
|
|
|
# make sure audios are more or less equal
|
|
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
|
|
rmse = compute_rmse(
|
|
audio_output_concat_context.squeeze().cpu().numpy(),
|
|
audio_output_entire_context.squeeze().cpu().numpy(),
|
|
)
|
|
self.assertTrue(rmse < 1e-3)
|
|
|
|
def test_integration(self):
|
|
expected_rmses = {
|
|
"8": 0.0018785292,
|
|
"32": 0.0012330565,
|
|
}
|
|
expected_codesums = {
|
|
"8": 430423,
|
|
"32": 1803071,
|
|
}
|
|
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
|
|
model_id = "kyutai/mimi"
|
|
|
|
processor = AutoFeatureExtractor.from_pretrained(model_id)
|
|
|
|
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
|
|
audio_sample = librispeech_dummy[-1]["audio"]["array"]
|
|
|
|
inputs = processor(
|
|
raw_audio=audio_sample,
|
|
sampling_rate=processor.sampling_rate,
|
|
return_tensors="pt",
|
|
).to(torch_device)
|
|
|
|
for use_cache in [False, True]:
|
|
model = MimiModel.from_pretrained(model_id, use_cache=use_cache).to(torch_device)
|
|
for num_codebooks, expected_rmse in expected_rmses.items():
|
|
with torch.no_grad():
|
|
# use max bandwith for best possible reconstruction
|
|
encoder_outputs = model.encode(inputs["input_values"], num_quantizers=int(num_codebooks))
|
|
|
|
audio_code_sums = encoder_outputs[0].sum().cpu().item()
|
|
|
|
# make sure audio encoded codes are correct
|
|
# assert relative difference less than a threshold, because `audio_code_sums` varies a bit
|
|
# depending on torch version
|
|
self.assertTrue(
|
|
np.abs(audio_code_sums - expected_codesums[num_codebooks]) <= (3e-3 * audio_code_sums)
|
|
)
|
|
|
|
input_values_dec = model.decode(encoder_outputs[0], padding_mask=inputs["padding_mask"])[0]
|
|
input_values_enc_dec = model(
|
|
inputs["input_values"], inputs["padding_mask"], num_quantizers=int(num_codebooks)
|
|
)[1]
|
|
|
|
# make sure forward and decode gives same result
|
|
self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec))
|
|
|
|
# make sure shape matches
|
|
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
|
|
|
|
arr = inputs["input_values"][0].cpu().numpy()
|
|
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
|
|
|
|
# make sure audios are more or less equal
|
|
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
|
|
rmse = compute_rmse(arr, arr_enc_dec)
|
|
self.assertTrue(np.abs(rmse - expected_rmse) < 1e-5)
|