transformers/tests/models/mimi/test_modeling_mimi.py
Dmitry Rogozhkin 31830474bf
Fix test_eager_matches_sdpa_inference for XPU backend (#34889)
* Use torch.nn.attention.sdpa_kernel instead of deprecated torch.backends.cuda.sdp_kernel

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>

* Fix test_eager_matches_sdpa_inference for XPU backend

As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH
which is implemented on PyTorch level using aten operators and is device
agnostic with respect to implementation of each aten operator. Thus, we can
reuse CUDA (or CPU) MATH weights for XPU.

Fixes: #34888
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>

* Use torch.amp.autocast instead of deprecated torch.cuda.amp.autocast in nemotron

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>

---------

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-12-02 16:21:04 +01:00

865 lines
40 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Mimi model."""
import inspect
import os
import tempfile
import unittest
import numpy as np
from datasets import Audio, load_dataset
from parameterized import parameterized
from pytest import mark
from transformers import AutoFeatureExtractor, MimiConfig
from transformers.testing_utils import (
is_flaky,
is_torch_available,
require_flash_attn,
require_torch,
require_torch_gpu,
require_torch_sdpa,
slow,
torch_device,
)
from transformers.utils import (
is_torch_bf16_available_on_device,
is_torch_fp16_available_on_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, sdpa_kernel
if is_torch_available():
import torch
from transformers import MimiModel
# Copied from transformers.tests.encodec.test_modeling_encodec.prepare_inputs_dict
def prepare_inputs_dict(
config,
input_ids=None,
input_values=None,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if input_ids is not None:
encoder_dict = {"input_ids": input_ids}
else:
encoder_dict = {"input_values": input_values}
decoder_dict = {"decoder_input_ids": decoder_input_ids} if decoder_input_ids is not None else {}
return {**encoder_dict, **decoder_dict}
@require_torch
class MimiModelTester:
def __init__(
self,
parent,
batch_size=5,
num_channels=1,
is_training=False,
intermediate_size=40,
hidden_size=32,
num_filters=8,
num_residual_layers=1,
upsampling_ratios=[8, 4],
codebook_size=64,
vector_quantization_hidden_dimension=64,
codebook_dim=64,
upsample_groups=32,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
sliding_window=4,
use_cache=False,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.is_training = is_training
self.intermediate_size = intermediate_size
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios
self.codebook_size = codebook_size
self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension
self.codebook_dim = codebook_dim
self.upsample_groups = upsample_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.sliding_window = sliding_window
self.use_cache = use_cache
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def prepare_config_and_inputs_for_model_class(self, model_class):
config, inputs_dict = self.prepare_config_and_inputs()
inputs_dict["audio_codes"] = ids_tensor([self.batch_size, 1, self.num_channels], self.codebook_size).type(
torch.int32
)
return config, inputs_dict
def get_config(self):
return MimiConfig(
audio_channels=self.num_channels,
chunk_in_sec=None,
hidden_size=self.hidden_size,
num_filters=self.num_filters,
num_residual_layers=self.num_residual_layers,
upsampling_ratios=self.upsampling_ratios,
codebook_size=self.codebook_size,
vector_quantization_hidden_dimension=self.vector_quantization_hidden_dimension,
upsample_groups=self.upsample_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
sliding_window=self.sliding_window,
codebook_dim=self.codebook_dim,
use_cache=self.use_cache,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = MimiModel(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
result = model(input_values)
self.parent.assertEqual(
result.audio_values.shape, (self.batch_size, self.num_channels, self.intermediate_size)
)
@require_torch
class MimiModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (MimiModel,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
test_torchscript = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
# model does support returning hidden states
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if "output_attentions" in inputs_dict:
inputs_dict.pop("output_attentions")
if "output_hidden_states" in inputs_dict:
inputs_dict.pop("output_hidden_states")
return inputs_dict
def setUp(self):
self.model_tester = MimiModelTester(self)
self.config_tester = ConfigTester(
self, config_class=MimiConfig, hidden_size=37, common_properties=[], has_text_modality=False
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values", "padding_mask", "num_quantizers"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@unittest.skip(reason="The MimiModel does not have `inputs_embeds` logics")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="The MimiModel does not have `inputs_embeds` logics")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
def test_torchscript_output_attentions(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `hidden_states` logic")
def test_torchscript_output_hidden_state(self):
pass
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest._create_and_check_torchscript
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to False")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
main_input = inputs[main_input_name]
model(main_input)
traced_model = torch.jit.trace(model, main_input)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
def test_attention_outputs(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `hidden_states` logic")
def test_hidden_states_output(self):
pass
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_determinism
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
# outputs are not tensors but list (since each sequence don't have the same frame_length)
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_model_outputs_equivalence
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs)
self.assertTrue(isinstance(tuple_output, tuple))
self.assertTrue(isinstance(dict_output, dict))
for tuple_value, dict_value in zip(tuple_output, dict_output.values()):
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_value), set_nan_tensor_to_zero(dict_value), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_value - dict_value))}. Tuple has `nan`:"
f" {torch.isnan(tuple_value).any()} and `inf`: {torch.isinf(tuple_value)}. Dict has"
f" `nan`: {torch.isnan(dict_value).any()} and `inf`: {torch.isinf(dict_value)}."
),
)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = ["conv", "input_proj", "output_proj"]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_identity_shortcut
def test_identity_shortcut(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_conv_shortcut = False
self.model_tester.create_and_check_model_forward(config, inputs_dict)
# Overwrite to use `audio_values` as the tensors to compare.
# TODO: Try to do this in the parent class.
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
@require_torch_sdpa
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
if torch_dtype == "float16" and torch_device == "cpu":
self.skipTest("`replication_pad1d` not implemented for 'Half")
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self.all_model_classes[0]._supports_sdpa:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
self.skipTest(
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
)
# Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
if torch_dtype == "float16":
torch_dtype = torch.float16
elif torch_dtype == "bfloat16":
torch_dtype = torch.bfloat16
elif torch_dtype == "float32":
torch_dtype = torch.float32
atols = {
("cpu", False, torch.float32): 1e-6,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-6,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-6,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-6,
("cuda", True, torch.bfloat16): 1e-2,
("cuda", True, torch.float16): 5e-3,
}
rtols = {
("cpu", False, torch.float32): 1e-4,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-4,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-4,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-4,
("cuda", True, torch.bfloat16): 3e-2,
("cuda", True, torch.float16): 5e-3,
}
def get_mean_reldiff(failcase, x, ref, atol, rtol):
return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
# FIXME: we deactivate boolean mask for models using "use_mask_token" in their constructors.
# These models support masking only in the case `use_mask_token=True`. Otherwise they cannot consume an input mask.
# This means that the class needs to be instantiated much later, after `use_mask` is set, which means a significant refactor of the code.
# However masking there is not done at any layers that matters (i.e self-attention), therefore we can safely deactivate it.
deactivate_mask = "use_mask_token" in inspect.signature(model_class).parameters
is_encoder_decoder = model.config.is_encoder_decoder
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
model_sdpa = model_sdpa.eval().to(torch_device)
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
model_eager = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch_dtype,
attn_implementation="eager",
)
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
raise ValueError("The eager model should not have SDPA attention layers")
has_sdpa = False
for name, submodule in model_sdpa.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
has_sdpa = True
break
if not has_sdpa and model_sdpa.config.model_type != "falcon":
raise ValueError("The SDPA model should have SDPA attention layers")
# We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
# but it would be nicer to have an efficient way to use parameterized.expand
fail_cases = []
for padding_side in ["left", "right"]:
for use_mask in [False, True]:
for output_attentions in [True, False]:
can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
if not (self.has_attentions and can_output_attn) and output_attentions:
continue
for batch_size in [7]:
dummy_input = inputs_dict[model.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
dummy_input = dummy_input.to(torch_dtype)
dummy_input = dummy_input[:batch_size]
if dummy_input.shape[0] != batch_size:
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
extension = torch.rand(
batch_size - dummy_input.shape[0],
*dummy_input.shape[1:],
dtype=torch_dtype,
device=torch_device,
)
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
else:
extension = torch.randint(
high=5,
size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
dtype=dummy_input.dtype,
device=torch_device,
)
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
if not use_mask:
dummy_attention_mask = None
else:
dummy_attention_mask = inputs_dict.get("attention_mask", None)
if dummy_attention_mask is None:
if is_encoder_decoder:
seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
else:
seqlen = dummy_input.shape[-1]
dummy_attention_mask = (
torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
)
dummy_attention_mask = dummy_attention_mask[:batch_size]
if dummy_attention_mask.shape[0] != batch_size:
extension = torch.ones(
batch_size - dummy_attention_mask.shape[0],
*dummy_attention_mask.shape[1:],
dtype=dummy_attention_mask.dtype,
device=torch_device,
)
dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
dummy_attention_mask = dummy_attention_mask.to(torch_device)
dummy_attention_mask[:] = 1
if padding_side == "left":
dummy_attention_mask[-1, :2] = 0
dummy_attention_mask[-1, 2:] = 1
elif padding_side == "right":
dummy_attention_mask[-1, -2:] = 0
dummy_attention_mask[-1, :-2] = 1
for enable_kernels in [False, True]:
failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
if is_encoder_decoder:
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[
:batch_size
]
if decoder_input_ids.shape[0] != batch_size:
extension = torch.ones(
batch_size - decoder_input_ids.shape[0],
*decoder_input_ids.shape[1:],
dtype=decoder_input_ids.dtype,
device=torch_device,
)
decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
decoder_input_ids = decoder_input_ids.to(torch_device)
# TODO: never an `attention_mask` arg here?
processed_inputs = {
model.main_input_name: dummy_input,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": dummy_attention_mask,
"output_hidden_states": True,
}
else:
processed_inputs = {
model.main_input_name: dummy_input,
"output_hidden_states": True,
}
# Otherwise fails for e.g. WhisperEncoderModel
if "attention_mask" in inspect.signature(model_eager.forward).parameters:
processed_inputs["attention_mask"] = dummy_attention_mask
if (
self.has_attentions
and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
):
processed_inputs["output_attentions"] = output_attentions
if not deactivate_mask and (
"bool_masked_pos" in inspect.signature(model_eager.forward).parameters
):
dummy_mask = torch.ones((self.model_tester.num_masks,))
# In case of additional token (like class) we define a custom `mask_length`
if hasattr(self.model_tester, "mask_length"):
mask_length = self.model_tester.mask_length - dummy_mask.size(0)
else:
mask_length = self.model_tester.seq_length - dummy_mask.size(0)
dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)
if "noise" in inspect.signature(model_eager.forward).parameters:
np.random.seed(2)
num_patches = int(
(self.model_tester.image_size // self.model_tester.patch_size) ** 2
)
noise = np.random.uniform(size=(batch_size, num_patches))
processed_inputs["noise"] = torch.from_numpy(noise)
# TODO: test gradients as well (& for FA2 as well!)
with torch.no_grad():
with sdpa_kernel(
enable_flash=enable_kernels,
enable_math=True,
enable_mem_efficient=enable_kernels,
):
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
outputs_eager = model_eager(**prepared_inputs)
outputs_sdpa = model_sdpa(**prepared_inputs)
# Ignore copy
logits_eager = outputs_eager.audio_values
# Ignore copy
logits_sdpa = outputs_sdpa.audio_values
if torch_device in ["cpu", "cuda"]:
atol = atols[torch_device, enable_kernels, torch_dtype]
rtol = rtols[torch_device, enable_kernels, torch_dtype]
elif torch_device == "xpu":
# As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH
# which is implemented on PyTorch level using aten operators and is
# device agnostic with respect to implementation of each aten operator.
atol = atols["cuda", False, torch_dtype]
rtol = rtols["cuda", False, torch_dtype]
else:
atol = 1e-7
rtol = 1e-4
# Masked tokens output slightly deviates - we don't mind that.
if use_mask:
_logits_sdpa = torch.zeros_like(input=logits_sdpa)
_logits_eager = torch.zeros_like(input=logits_eager)
_logits_sdpa[:-1] = logits_sdpa[:-1]
_logits_eager[:-1] = logits_eager[:-1]
if padding_side == "left":
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, 2:]
_logits_eager[-1:, 2:] = logits_eager[-1:, 2:]
elif padding_side == "right":
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, :-2]
_logits_eager[-1:, 2:] = logits_eager[-1:, :-2]
logits_sdpa = _logits_sdpa
logits_eager = _logits_eager
results = [
torch.allclose(_logits_sdpa, _logits_eager, atol=atol, rtol=rtol)
for (_logits_sdpa, _logits_eager) in zip(logits_sdpa, logits_eager)
]
# If 80% batch elements have matched results, it's fine
if np.mean(results) < 0.8:
fail_cases.append(
get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
)
self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
@is_flaky()
def test_flash_attn_2_inference_equivalence(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
model.to(torch_device)
dummy_input = inputs_dict[model.main_input_name][:1]
if dummy_input.dtype in [torch.float32, torch.float16]:
dummy_input = dummy_input.to(torch.bfloat16)
outputs = model(dummy_input)
outputs_fa = model_fa(dummy_input)
logits = outputs[1]
logits_fa = outputs_fa[1]
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
@unittest.skip(reason="The MimiModel does not support right padding")
def test_flash_attn_2_inference_equivalence_right_padding(self):
pass
@unittest.skip(reason="The MimiModel does not have support dynamic compile yet")
def test_sdpa_can_compile_dynamic(self):
pass
@is_flaky()
def test_batching_equivalence(self):
super().test_batching_equivalence()
# Copied from transformers.tests.encodec.test_modeling_encodec.normalize
def normalize(arr):
norm = np.linalg.norm(arr)
normalized_arr = arr / norm
return normalized_arr
# Copied from transformers.tests.encodec.test_modeling_encodec.compute_rmse
def compute_rmse(arr1, arr2):
arr1_normalized = normalize(arr1)
arr2_normalized = normalize(arr2)
return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())
@slow
@require_torch
class MimiIntegrationTest(unittest.TestCase):
def test_integration_using_cache_decode(self):
expected_rmse = {
"8": 0.0018785292,
"32": 0.0012330565,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "kyutai/mimi"
model = MimiModel.from_pretrained(model_id, use_cache=True).to(torch_device)
processor = AutoFeatureExtractor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
for num_codebooks, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(inputs["input_values"], num_quantizers=int(num_codebooks))
audio_codes = encoder_outputs[0]
decoder_outputs_first_part = model.decode(audio_codes[:, :, : audio_codes.shape[2] // 2])
decoder_outputs_second_part = model.decode(
audio_codes[:, :, audio_codes.shape[2] // 2 :],
decoder_past_key_values=decoder_outputs_first_part.decoder_past_key_values,
)
audio_output_entire_context = model.decode(audio_codes)[0]
audio_output_concat_context = torch.cat(
[decoder_outputs_first_part[0], decoder_outputs_second_part[0]], dim=2
)
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(
audio_output_concat_context.squeeze().cpu().numpy(),
audio_output_entire_context.squeeze().cpu().numpy(),
)
self.assertTrue(rmse < 1e-3)
def test_integration(self):
expected_rmses = {
"8": 0.0018785292,
"32": 0.0012330565,
}
expected_codesums = {
"8": 430423,
"32": 1803071,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "kyutai/mimi"
processor = AutoFeatureExtractor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
for use_cache in [False, True]:
model = MimiModel.from_pretrained(model_id, use_cache=use_cache).to(torch_device)
for num_codebooks, expected_rmse in expected_rmses.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(inputs["input_values"], num_quantizers=int(num_codebooks))
audio_code_sums = encoder_outputs[0].sum().cpu().item()
# make sure audio encoded codes are correct
# assert relative difference less than a threshold, because `audio_code_sums` varies a bit
# depending on torch version
self.assertTrue(
np.abs(audio_code_sums - expected_codesums[num_codebooks]) <= (3e-3 * audio_code_sums)
)
input_values_dec = model.decode(encoder_outputs[0], padding_mask=inputs["padding_mask"])[0]
input_values_enc_dec = model(
inputs["input_values"], inputs["padding_mask"], num_quantizers=int(num_codebooks)
)[1]
# make sure forward and decode gives same result
self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec))
# make sure shape matches
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(np.abs(rmse - expected_rmse) < 1e-5)