transformers/tests/bettertransformer/test_integration.py
fxmarty 3042c63a95
Add methods to PreTrainedModel to use PyTorch's BetterTransformer (#21259)
* fix mess

* better documentation

* typo

* fix doc

* update

* add test

* fix test

* more tests

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* move to utils

* Apply suggestions from code review

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* nit

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2023-04-27 11:03:42 +02:00

87 lines
2.9 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class BetterTransformerIntegrationTest(unittest.TestCase):
# refer to the full test suite in Optimum library:
# https://github.com/huggingface/optimum/tree/main/tests/bettertransformer
def test_transform_and_reverse(self):
r"""
Classic tests to simply check if the conversion has been successfull.
"""
model_id = "hf-internal-testing/tiny-random-t5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
inp = tokenizer("This is me", return_tensors="pt")
model = model.to_bettertransformer()
self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules()))
output = model.generate(**inp)
model = model.reverse_bettertransformer()
self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules()))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_reloaded = AutoModelForSeq2SeqLM.from_pretrained(tmpdirname)
self.assertFalse(
any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules())
)
output_from_pretrained = model_reloaded.generate(**inp)
self.assertTrue(torch.allclose(output, output_from_pretrained))
def test_error_save_pretrained(self):
r"""
The save_pretrained method should raise a ValueError if the model is in BetterTransformer mode.
All should be good if the model is reversed.
"""
model_id = "hf-internal-testing/tiny-random-t5"
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
model = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(ValueError):
model.save_pretrained(tmpdirname)
model = model.reverse_bettertransformer()
model.save_pretrained(tmpdirname)