transformers/src/transformers/models/t5gemma/modular_t5gemma.py
Yih-Dar 2f50230c59
fix t5gemma tests (#39052)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-26 18:48:14 +02:00

1461 lines
59 KiB
Python

# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Optional, Union
import torch
import torch.nn as nn
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...configuration_utils import PretrainedConfig
from ...generation import GenerationMixin
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import (
auto_docstring,
can_return_tuple,
is_torch_flex_attn_available,
is_torchdynamo_compiling,
logging,
)
from ..gemma2.configuration_gemma2 import Gemma2Config
from ..gemma2.modeling_gemma2 import (
Gemma2Attention,
Gemma2MLP,
Gemma2PreTrainedModel,
Gemma2RMSNorm,
Gemma2RotaryEmbedding,
create_causal_mask,
create_sliding_window_causal_mask,
eager_attention_forward,
)
# TODO(bzhanggo): figure out these documentations
_CHECKPOINT_FOR_DOC = "google/t5gemma-placeholder"
if is_torch_flex_attn_available():
pass
logger = logging.get_logger(__name__)
class T5GemmaModuleConfig(Gemma2Config):
"""Module config (encoder or decoder): the same as Gemma2Config."""
def __init__(self, **super_kwargs):
super().__init__(**super_kwargs)
class T5GemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`T5GemmaModel`]. It is used to instantiate an T5Gemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to a hypothetical balanced Gemma2 encoder-decoder model.
e.g. [google/t5gemma-placeholder](https://huggingface.co/google/t5gemma-placeholder)
```python
>>> from transformers import T5GemmaConfig, T5GemmaModel
>>> t5gemma_config = T5GemmaConfig.from_pretrained("google/t5gemma-placeholder")
>>> model = T5GemmaModel(t5gemma_config)
```
Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig] for more information.
Args:
encoder (`Union[T5GemmaModuleConfig, dict]`, optional, *optional*):
Configuration for the encoder.
decoder (`Union[T5GemmaModuleConfig, dict]`, optional, *optional*):
Configuration for the decoder.
is_encoder_decoder (bool, optional, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
dropout_rate (`float`, *optional*, defaults to 0.0):
The ratio for all dropout layers (following T5).
classifier_dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier (following T5).
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for attention.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether tie input and output embeddings.
kwargs (additional keyword arguments, optional, *optional*):
Will be passed to the PretrainedConfig base class.
"""
model_type = "t5gemma"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
# encoder
"encoder.layers.*.self_attn.q_proj": "colwise",
"encoder.layers.*.self_attn.k_proj": "colwise",
"encoder.layers.*.self_attn.v_proj": "colwise",
"encoder.layers.*.self_attn.o_proj": "rowwise",
"encoder.layers.*.mlp.gate_proj": "colwise",
"encoder.layers.*.mlp.up_proj": "colwise",
"encoder.layers.*.mlp.down_proj": "rowwise",
# decoder
"decoder.layers.*.self_attn.q_proj": "colwise",
"decoder.layers.*.self_attn.k_proj": "colwise",
"decoder.layers.*.self_attn.v_proj": "colwise",
"decoder.layers.*.self_attn.o_proj": "rowwise",
"decoder.layers.*.cross_attn.q_proj": "colwise",
"decoder.layers.*.cross_attn.k_proj": "colwise",
"decoder.layers.*.cross_attn.v_proj": "colwise",
"decoder.layers.*.cross_attn.o_proj": "rowwise",
"decoder.layers.*.mlp.gate_proj": "colwise",
"decoder.layers.*.mlp.up_proj": "colwise",
"decoder.layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
# encoder
"encoder.embed_tokens": (["input_ids"], ["inputs_embeds"]),
"encoder.layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"encoder.norm": (["hidden_states"], ["hidden_states"]),
# decoder
"decoder.embed_tokens": (["input_ids"], ["inputs_embeds"]),
"decoder.layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"decoder.norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
encoder: Optional[Union[T5GemmaModuleConfig, dict[Any, Any]]] = None,
decoder: Optional[Union[T5GemmaModuleConfig, dict[Any, Any]]] = None,
is_encoder_decoder: bool = True,
dropout_rate: float = 0.0,
classifier_dropout_rate: float = 0.0,
attention_dropout: float = 0.0,
tie_word_embeddings: bool = True,
**kwargs,
):
# Encoder.
if isinstance(encoder, dict):
# From preset configuration
encoder = T5GemmaModuleConfig(**encoder)
elif encoder is None:
# From scratch
encoder = T5GemmaModuleConfig()
else:
assert isinstance(encoder, T5GemmaModuleConfig), f"{type(encoder)} is not supported."
# Decoder.
if isinstance(decoder, dict):
# From preset configuration
decoder = T5GemmaModuleConfig(**decoder)
elif decoder is None:
# From scratch
decoder = encoder
else:
assert isinstance(decoder, T5GemmaModuleConfig), f"{type(decoder)} is not supported."
# Decouple encoder and decoder config in any case
encoder = T5GemmaModuleConfig(**encoder.to_dict())
decoder = T5GemmaModuleConfig(**decoder.to_dict())
encoder.is_decoder = False
encoder.dropout_rate = dropout_rate
encoder.attention_dropout = attention_dropout
self.encoder = encoder
decoder.is_decoder = True
decoder.use_cache = True
decoder.dropout_rate = dropout_rate
decoder.attention_dropout = attention_dropout
decoder.cross_attention_hidden_size = encoder.hidden_size
self.decoder = decoder
for special_token_key in ["bos_token_id", "pad_token_id", "eos_token_id"]:
if special_token_key not in kwargs:
kwargs[special_token_key] = getattr(decoder, special_token_key)
super().__init__(**kwargs)
self.is_encoder_decoder = is_encoder_decoder
self.use_cache = kwargs.get("use_cache", decoder.use_cache)
self.initializer_range = kwargs.get("initializer_range", decoder.initializer_range)
self.dropout_rate = dropout_rate
self.attention_dropout = attention_dropout
self.classifier_dropout_rate = classifier_dropout_rate
self.tie_word_embeddings = tie_word_embeddings
def __setattr__(self, key, value):
shared_attr_with_submodules = [
"output_hidden_states",
"output_attentions",
"_attn_implementation",
"dropout_rate",
"attention_dropout",
]
if key in shared_attr_with_submodules:
setattr(self.encoder, key, value)
setattr(self.decoder, key, value)
super().__setattr__(key, value)
def get_text_config(self, decoder=False) -> "PretrainedConfig":
# Always return self, regardless of the decoder option.
del decoder
return self
class T5GemmaRMSNorm(Gemma2RMSNorm):
pass
class T5GemmaMLP(Gemma2MLP):
def __init__(self, config):
super().__init__(config)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x):
hidden_states = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
hidden_states = self.dropout(hidden_states)
down_proj = self.down_proj(hidden_states)
return down_proj
class T5GemmaRotaryEmbedding(Gemma2RotaryEmbedding):
def __init__(self, config, device=None):
super().__init__(config, device)
class T5GemmaSelfAttention(Gemma2Attention):
def __init__(self, config: T5GemmaModuleConfig, layer_idx: int):
super().__init__(config, layer_idx)
# Requied by flash attention: encoder selfattention is non-causal
self.is_causal = config.is_decoder
class T5GemmaCrossAttention(Gemma2Attention):
def __init__(self, config: T5GemmaModuleConfig, layer_idx: int):
super().__init__(config, layer_idx)
# Cross-attention only supports global attention
del self.sliding_window
# Requied by flash attention
self.is_causal = False
if config.cross_attention_hidden_size is None:
raise ValueError("Cross-attention needs cross_attention_hidden_size to be specified.")
self.k_proj = nn.Linear(
config.cross_attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.cross_attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor],
encoder_hidden_states: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
if encoder_hidden_states is None:
raise ValueError("Encoder hidden state is required for cross attention.")
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
# [batch, q_len, -1, head_dim] => [batch, -1, q_len, head_dim]
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
# conditions for calculating key and value states
if (
# no cache
past_key_value is None
# cross-attention but not cached yet
or not is_updated
):
encoder_input_shape = encoder_hidden_states.shape[:-1]
encoder_hidden_shape = (*encoder_input_shape, -1, self.head_dim)
# [batch, kv_len, -1, head_dim] => [batch, -1, kv_len, head_dim]
key_states = self.k_proj(encoder_hidden_states).view(encoder_hidden_shape).transpose(1, 2)
value_states = self.v_proj(encoder_hidden_states).view(encoder_hidden_shape).transpose(1, 2)
# update cache
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
key_states, value_states = curr_past_key_value.update(key_states, value_states, self.layer_idx)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
past_key_value.is_updated[self.layer_idx] = True
# cross-attention: reuse cached states
else:
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=None,
softcap=self.attn_logit_softcapping,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
def bidirectional_mask_function(attention_mask: Optional[torch.Tensor]) -> Callable:
"""
This creates bidirectional attention mask.
"""
def inner_mask(batch_idx: int, head_idx: int, q_idx: int, kv_idx: int) -> bool:
# if attention mask is not given, all attention positions are considered valid.
if attention_mask is None:
return torch.ones((), dtype=torch.bool)
# attention_mask: [batch_size, kv_len]
return attention_mask[batch_idx, kv_idx].to(torch.bool)
return inner_mask
def sliding_window_bidirectional_mask_function(sliding_window: int) -> Callable:
"""
This creates bidirectional attention mask with sliding window.
"""
def inner_mask(batch_idx: int, head_idx: int, q_idx: int, kv_idx: int) -> bool:
return (q_idx - sliding_window < kv_idx) & (kv_idx < q_idx + sliding_window)
return inner_mask
class T5GemmaEncoderLayer(GradientCheckpointingLayer):
"""Encoder sub-layer."""
def __init__(self, config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
self.layer_idx = layer_idx
self.attention_type = config.layer_types[layer_idx]
# self attention
self.self_attn = T5GemmaSelfAttention(
config=config,
layer_idx=layer_idx,
)
self.pre_self_attn_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_self_attn_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# mlp
self.mlp = T5GemmaMLP(config)
self.pre_feedforward_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# dropout
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = False,
**kwargs,
) -> tuple[
torch.FloatTensor,
Optional[tuple[torch.FloatTensor, torch.FloatTensor]],
]:
# Self Attention
residual = hidden_states
hidden_states = self.pre_self_attn_layernorm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
# Remove all caches for encoders.
use_cache=False,
past_key_value=None,
**kwargs,
)
hidden_states = self.post_self_attn_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
# Mlp
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class T5GemmaDecoderLayer(T5GemmaEncoderLayer):
"""Decoder sub-layer: an extra cross-attention layer."""
def __init__(self, config, layer_idx: int):
super().__init__(config, layer_idx)
# cross attention
self.cross_attn = T5GemmaCrossAttention(config=config, layer_idx=layer_idx)
self.pre_cross_attn_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_cross_attn_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[EncoderDecoderCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[
torch.FloatTensor,
Optional[tuple[torch.FloatTensor, torch.FloatTensor]],
Optional[tuple[torch.FloatTensor, torch.FloatTensor]],
]:
# Self Attention
residual = hidden_states
hidden_states = self.pre_self_attn_layernorm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value.self_attention_cache if past_key_value is not None else None,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.post_self_attn_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
# Cross Attention
residual = hidden_states
hidden_states = self.pre_cross_attn_layernorm(hidden_states)
hidden_states, cross_attn_weights = self.cross_attn(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
**kwargs,
)
hidden_states = self.post_cross_attn_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
# Mlp
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class T5GemmaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, hidden_size: int, num_labels: int, classifier_dropout_rate: float = 0.0):
super().__init__()
self.dropout = nn.Dropout(p=classifier_dropout_rate)
self.out_proj = nn.Linear(hidden_size, num_labels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class T5GemmaLMHead(nn.Module):
"""Head for language modeling (generation) tasks."""
def __init__(self, hidden_size: int, vocab_size: int, bias: bool = False):
super().__init__()
self.out_proj = nn.Linear(hidden_size, vocab_size, bias=bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
logits = self.out_proj(hidden_states)
return logits
@auto_docstring
class T5GemmaPreTrainedModel(Gemma2PreTrainedModel):
config_class = T5GemmaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["T5GemmaBlock"]
def _init_weights(self, module):
# TODO: support intialization for encoders and decoders separately(?)
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, T5GemmaRMSNorm):
module.weight.data.fill_(1.0)
elif isinstance(module, T5GemmaClassificationHead):
scale = module.out_proj.weight.shape[0] ** -0.5
module.out_proj.weight.data.normal_(mean=0.0, std=std * scale)
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, T5GemmaLMHead):
if not self.config.tie_word_embeddings:
scale = module.out_proj.weight.shape[0] ** -0.5
module.out_proj.weight.data.normal_(mean=0.0, std=std * scale)
def _shift_right(self, input_ids):
"""
Shifts input_ids to the right, prepends the decoder_start_token_id, and handles
pad_token_id replacement for labels that were -100.
This is a common preparation step for decoder inputs in sequence-to-sequence models.
"""
decoder_start_token_id = self.config.decoder.bos_token_id
pad_token_id = self.config.decoder.pad_token_id
if decoder_start_token_id is None:
raise ValueError("self.model.config.decoder.bos_token_id has to be defined. ")
# shift inputs to the right
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.decoder.pad_token_id has to be defined.")
# Is this T5 specific?
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def make_default_2d_attention_mask(
token_ids: Optional[torch.LongTensor],
hidden_states: torch.Tensor,
pad_token_id: Optional[int],
) -> torch.Tensor:
"""Construct the default attention mask."""
if token_ids is not None:
if pad_token_id is None:
raise ValueError("`pad_token_id` is required for padding information.")
attention_mask = (token_ids != pad_token_id).to(hidden_states.device, torch.long)
else:
attention_mask = torch.ones(
(hidden_states.shape[0], hidden_states.shape[1]), device=hidden_states.device, dtype=torch.long
)
return attention_mask
class T5GemmaEncoder(T5GemmaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.norm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = T5GemmaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.layers = nn.ModuleList(
[T5GemmaEncoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutput:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
# Input embeddings
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# Cache position: only used for mask construction.
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
# Postional ids.
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# Regular Attention mask.
if attention_mask is None:
attention_mask = make_default_2d_attention_mask(input_ids, inputs_embeds, self.config.pad_token_id)
# Attention masks
if not isinstance(self_attn_mask_mapping := attention_mask, dict):
# Prepare mask arguments
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": None,
}
# Create the masks
self_attn_mask_mapping = {
"full_attention": create_causal_mask(
**mask_kwargs,
or_mask_function=bidirectional_mask_function(attention_mask),
),
"sliding_attention": create_sliding_window_causal_mask(
**mask_kwargs,
or_mask_function=sliding_window_bidirectional_mask_function(self.config.sliding_window),
and_mask_function=bidirectional_mask_function(attention_mask),
),
}
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# transformer layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
hidden_states = self.dropout(hidden_states)
for layer_module in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer_module(
hidden_states,
position_embeddings,
self_attn_mask_mapping[layer_module.attention_type],
position_ids,
output_attentions,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
hidden_states = self.dropout(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class T5GemmaDecoder(T5GemmaEncoder):
def __init__(self, config):
super().__init__(config)
self.layers = nn.ModuleList(
[T5GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[EncoderDecoderCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPastAndCrossAttentions:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if encoder_hidden_states is None:
raise ValueError("`encoder_hidden_states` must be given in decoder")
# Input embeddings
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# Caching
if not self.training and use_cache and past_key_values is None:
past_key_values = EncoderDecoderCache(
self_attention_cache=DynamicCache(),
cross_attention_cache=DynamicCache(),
)
# Cache positions.
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
# Position ids.
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# Regular Attention mask.
if attention_mask is None and past_key_values is None:
attention_mask = make_default_2d_attention_mask(input_ids, inputs_embeds, self.config.pad_token_id)
# Attention masks: Self attention
if not isinstance(self_attn_mask_mapping := attention_mask, dict):
# Prepare mask arguments
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values.self_attention_cache if past_key_values is not None else None,
}
# Create the masks
self_attn_mask_mapping = {
"full_attention": create_causal_mask(**mask_kwargs),
"sliding_attention": create_sliding_window_causal_mask(**mask_kwargs),
}
# Attention masks: Cross attention
if not isinstance(cross_attn_mask_mapping := encoder_attention_mask, dict):
# Prepare mask arguments
mask_kwargs = {
"config": self.config,
"input_embeds": encoder_hidden_states,
"attention_mask": encoder_attention_mask,
"cache_position": cache_position,
"past_key_values": None,
}
cross_attn_mask_mapping = {
"full_attention": create_causal_mask(
**mask_kwargs,
or_mask_function=bidirectional_mask_function(encoder_attention_mask),
),
}
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# transformer layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if output_attentions else None
hidden_states = self.dropout(hidden_states)
for layer_module in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer_module(
hidden_states,
position_embeddings,
self_attn_mask_mapping[layer_module.attention_type],
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
encoder_hidden_states,
cross_attn_mask_mapping["full_attention"],
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
all_cross_attns += (layer_outputs[2],)
hidden_states = self.norm(hidden_states)
hidden_states = self.dropout(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
@auto_docstring
class T5GemmaModel(T5GemmaPreTrainedModel):
def __init__(self, config: T5GemmaConfig):
super().__init__(config)
if not config.is_encoder_decoder:
raise ValueError("T5GemmaModel only support encoder-decoder modeling. Use `T5GemmaEncoderModel` instead.")
self.encoder = T5GemmaEncoder(config.encoder)
self.decoder = T5GemmaDecoder(config.decoder)
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.encoder.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
return self.encoder.set_input_embeddings(new_embeddings)
@can_return_tuple
@auto_docstring
def forward(
self,
# encoder
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
# decoder
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
decoder_position_ids: Optional[torch.LongTensor] = None,
# others
encoder_outputs: Optional[BaseModelOutput] = None,
past_key_values: Optional[EncoderDecoderCache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Seq2SeqModelOutput:
r"""
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, decoder_sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0,
config.decoder.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
**flash_attn_kwargs: flash attention related parameters.
"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**flash_attn_kwargs,
)
encoder_hidden_states = encoder_outputs.last_hidden_state
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**flash_attn_kwargs,
)
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@auto_docstring
class T5GemmaEncoderModel(T5GemmaPreTrainedModel):
def __init__(self, config: T5GemmaConfig):
super().__init__(config)
if config.is_encoder_decoder:
raise ValueError("T5GemmaEncoderModel only supports encoder-only model. Use `T5GemmaModel` instead.")
self.encoder = T5GemmaEncoder(config.encoder)
self.post_init()
def get_input_embeddings(self):
return self.encoder.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
return self.encoder.set_input_embeddings(new_embeddings)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutput:
r"""
**flash_attn_kwargs: flash attention related parameters.
"""
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**flash_attn_kwargs,
)
return encoder_outputs
class T5GemmaForConditionalGeneration(T5GemmaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["model.decoder.embed_tokens.weight", "lm_head.out_proj.weight"]
_tp_plan = {"lm_head.out_proj": "colwise_rep"}
_pp_plan = {"lm_head.out_proj": (["hidden_states"], ["logits"])}
def __init__(self, config: T5GemmaConfig):
config.is_encoder_decoder = True
super().__init__(config)
self.model = T5GemmaModel(config)
self.vocab_size = config.decoder.vocab_size
self.lm_head = T5GemmaLMHead(config.decoder.hidden_size, self.vocab_size)
self.loss_type = "ForMaskedLM"
self.post_init()
def set_output_embeddings(self, new_embeddings):
self.lm_head.out_proj = new_embeddings
def get_output_embeddings(self):
return self.lm_head.out_proj
def _tie_weights(self):
# Decoder input and output embeddings are tied.
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.lm_head.out_proj, self.get_decoder().get_input_embeddings())
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
@can_return_tuple
@auto_docstring
def forward(
self,
# encoder
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
# decoder
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
decoder_position_ids: Optional[torch.LongTensor] = None,
# others
encoder_outputs: Optional[BaseModelOutput] = None,
past_key_values: Optional[EncoderDecoderCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> Union[tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, decoder_sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0,
config.decoder.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
if self.training and self.config._attn_implementation != "eager":
msg = (
"It is strongly recommended to train T5Gemma models with the `eager` attention implementation "
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
)
if is_torchdynamo_compiling():
raise ValueError(msg)
else:
logger.warning_once(msg)
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
decoder_outputs: Seq2SeqModelOutput = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**loss_kwargs,
)
hidden_states = decoder_outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
decoder_config = self.get_decoder().config
if decoder_config.final_logit_softcapping is not None:
logits = logits / decoder_config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * decoder_config.final_logit_softcapping
loss = None
if labels is not None:
# Input has right-shifted so we directly perform masked lm loss
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
return Seq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.decoder_hidden_states,
decoder_attentions=decoder_outputs.decoder_attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=decoder_outputs.encoder_last_hidden_state,
encoder_hidden_states=decoder_outputs.encoder_hidden_states,
encoder_attentions=decoder_outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
@auto_docstring
class T5GemmaForSequenceClassification(T5GemmaPreTrainedModel):
def __init__(self, config: T5GemmaConfig, is_encoder_decoder: Optional[bool] = None):
"""
is_encoder_decoder (`Optional`, *optional*):
Whether use encoder_decoder for sequence classification. When set to False, only encoder is used.
"""
if is_encoder_decoder is not None:
config.is_encoder_decoder = is_encoder_decoder
super().__init__(config)
self.num_labels = config.num_labels
if config.is_encoder_decoder:
self.model = T5GemmaModel(config)
else:
self.model = T5GemmaEncoderModel(config)
hidden_size = config.encoder.hidden_size
if config.is_encoder_decoder:
hidden_size = config.decoder.hidden_size
classifier_dropout = getattr(config, "classifier_dropout_rate", 0.1)
self.score = T5GemmaClassificationHead(hidden_size, self.num_labels, classifier_dropout)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
@can_return_tuple
@auto_docstring
def forward(
self,
# encoder
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
# decoder
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
decoder_position_ids: Optional[torch.LongTensor] = None,
# others
encoder_outputs: Optional[BaseModelOutput] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutput:
r"""
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, decoder_sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0,
config.decoder.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if self.config.is_encoder_decoder and (input_ids is None and inputs_embeds is not None):
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__} in encoder-decoder mode."
)
# Following T5, we automatically creates decoder_input_ids from input_ids if no decoder_input_ids are provided
if self.config.is_encoder_decoder and (decoder_input_ids is None and decoder_inputs_embeds is None):
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
if self.config.is_encoder_decoder:
outputs: Seq2SeqModelOutput = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=False,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.decoder_hidden_states
attentions = outputs.decoder_attentions
else:
outputs: BaseModelOutput = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.hidden_states
attentions = outputs.attentions
logits = self.score(last_hidden_state)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
if self.config.is_encoder_decoder:
last_non_pad_token += 1 # due to the right shift.
last_non_pad_token = torch.clamp(last_non_pad_token, max=decoder_input_ids.shape[-1] - 1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutput(
loss=loss,
logits=pooled_logits,
hidden_states=hidden_states,
attentions=attentions,
)
@auto_docstring
class T5GemmaForTokenClassification(T5GemmaPreTrainedModel):
def __init__(self, config: T5GemmaConfig, is_encoder_decoder: Optional[bool] = None):
"""
is_encoder_decoder (`Optional`, *optional*):
Whether use encoder_decoder for token classification. When set to False, only encoder is used.
"""
if is_encoder_decoder is not None:
config.is_encoder_decoder = is_encoder_decoder
super().__init__(config)
self.num_labels = config.num_labels
if config.is_encoder_decoder:
self.model = T5GemmaModel(config)
else:
self.model = T5GemmaEncoderModel(config)
hidden_size = config.encoder.hidden_size
if config.is_encoder_decoder:
hidden_size = config.decoder.hidden_size
classifier_dropout = getattr(config, "classifier_dropout_rate", 0.1)
self.score = T5GemmaClassificationHead(hidden_size, self.num_labels, classifier_dropout)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
@can_return_tuple
@auto_docstring
def forward(
self,
# encoder
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
# decoder
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
decoder_position_ids: Optional[torch.LongTensor] = None,
# others
encoder_outputs: Optional[BaseModelOutput] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, decoder_sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0,
config.decoder.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if self.config.is_encoder_decoder and (input_ids is None and inputs_embeds is not None):
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__} in encoder-decoder mode."
)
if self.config.is_encoder_decoder and (decoder_input_ids is None and decoder_inputs_embeds is None):
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
if self.config.is_encoder_decoder:
outputs: Seq2SeqModelOutput = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=False,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.decoder_hidden_states
attentions = outputs.decoder_attentions
else:
outputs: BaseModelOutput = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.hidden_states
attentions = outputs.attentions
logits = self.score(last_hidden_state)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=hidden_states,
attentions=attentions,
)
__all__ = [
"T5GemmaConfig",
"T5GemmaModuleConfig",
"T5GemmaForConditionalGeneration",
"T5GemmaModel",
"T5GemmaEncoderModel",
"T5GemmaPreTrainedModel", # noqa: F822
"T5GemmaForSequenceClassification",
"T5GemmaForTokenClassification",
]