transformers/tests/modeling_transfo_xl_test.py

219 lines
8.4 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import json
import random
import torch
from pytorch_pretrained_bert import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel)
class TransfoXLModelTest(unittest.TestCase):
class TransfoXLModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
mem_len=30,
clamp_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
d_model=32,
d_embed=32,
n_head=4,
d_head=8,
d_inner=128,
div_val=2,
n_layer=5,
scope=None,
seed=1):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.mem_len = mem_len
self.clamp_len = clamp_len
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.cutoffs = cutoffs
self.d_model = d_model
self.d_embed = d_embed
self.n_head = n_head
self.d_head = d_head
self.d_inner = d_inner
self.div_val = div_val
self.n_layer = n_layer
self.scope = scope
self.seed = seed
def prepare_config_and_inputs(self):
input_ids_1 = TransfoXLModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = TransfoXLModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = TransfoXLModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = TransfoXLConfig(
vocab_size_or_config_json_file=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
d_model=self.d_model,
d_embed=self.d_embed,
n_head=self.n_head,
d_head=self.d_head,
d_inner=self.d_inner,
div_val=self.div_val,
n_layer=self.n_layer)
return (config, input_ids_1, input_ids_2, lm_labels)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLModel(config)
model.eval()
hidden_states_1, mems_1 = model(input_ids_1)
hidden_states_2, mems_2 = model(input_ids_2, mems_1)
outputs = {
"hidden_states_1": hidden_states_1,
"mems_1": mems_1,
"hidden_states_2": hidden_states_2,
"mems_2": mems_2,
}
return outputs
def check_transfo_xl_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states_1"].size()),
[self.batch_size, self.seq_length, self.d_model])
self.parent.assertListEqual(
list(result["hidden_states_2"].size()),
[self.batch_size, self.seq_length, self.d_model])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLLMHeadModel(config)
model.eval()
loss_1, mems_1a = model(input_ids_1, target=lm_labels)
lm_logits_1, mems_1b = model(input_ids_1)
loss_2, mems_2a = model(input_ids_2, target=lm_labels, mems=mems_1a)
lm_logits_2, mems_2b = model(input_ids_2, mems=mems_1b)
outputs = {
"loss_1": loss_1,
"mems_1a": mems_1a,
"lm_logits_1": lm_logits_1,
"mems_1b": mems_1b,
"loss_2": loss_2,
"mems_2a": mems_2a,
"lm_logits_2": lm_logits_2,
"mems_2b": mems_2b,
}
return outputs
def check_transfo_xl_lm_head_output(self, result):
self.parent.assertListEqual(
list(result["loss_1"].size()),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["lm_logits_1"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1a"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1b"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1a"]),
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1b"]))
self.parent.assertListEqual(
list(result["loss_2"].size()),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["lm_logits_2"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2a"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2b"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2a"]),
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2b"]))
def test_default(self):
self.run_tester(TransfoXLModelTest.TransfoXLModelTester(self))
def test_config_to_json_string(self):
config = TransfoXLConfig(vocab_size_or_config_json_file=96, d_embed=37)
obj = json.loads(config.to_json_string())
self.assertEqual(obj["n_token"], 96)
self.assertEqual(obj["d_embed"], 37)
def run_tester(self, tester):
config_and_inputs = tester.prepare_config_and_inputs()
tester.set_seed()
output_result = tester.create_transfo_xl_model(*config_and_inputs)
tester.check_transfo_xl_model_output(output_result)
tester.set_seed()
output_result = tester.create_transfo_xl_lm_head(*config_and_inputs)
tester.check_transfo_xl_lm_head_output(output_result)
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
if __name__ == "__main__":
unittest.main()