mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* fix test for bart. Order is correct now let's skip BPEs * ouf * styling * fix bert.... * slow refactoring * current updates * massive refactoring * update * NICE! * update to see where I am at * updates * update * update * revert * updates * updates * start supporting legacy_save * styling * big update * revert some changes * nits * nniiiiiice * small fixes * kinda fix t5 with new behaviour * major update * fixup * fix copies * today's updates * fix byt5 * upfate * update * update * updates * update vocab size test * Barthez does not use not need the fairseq offset ids * super calll must be after * calll super * move all super init * move other super init * fixup * nits * more fixes * nits * more fixes * nits * more fix * remove useless files * ouch all of them are affected * and more! * small imporvements * no more sanitize token * more changes around unique no split tokens * partially fix more things * keep legacy save but add warning * so... more fixes * updates * guess deberta tokenizer could be nuked * fixup * fixup did some bad things * nuke it if it breaks * remove prints and pretrain fast from slow with new format. * fixups * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * fiou * nit * by default specials should not be normalized? * update * remove brakpoint * updates * a lot of updates * fixup * fixes revert some changes to match fast * small nits * that makes it cleaner * fix camembert accordingly * update * some lest breaking changes * update * fixup * fix byt5 and whisper mostly * some more fixes, canine's byte vocab * fix gpt2 * fix most of the perceiver tests (4 left) * fix layout lmv3 * fixup * fix copies for gpt2 style * make sure to only warn once * fix perciever and gpt2 tests * some more backward compatibility: also read special tokens map because some ppl use it........////..... * fixup * add else when reading * nits * fresh updates * fix copies * will this make everything faster? * fixes * more fixes * update * more fixes * fixup * is the source of truth right? * sorry camembert for the troubles * current updates * fixup * update led * update * fix regression * fix single word * more model specific fixes * fix t5 tests * fixup * more comments * update * fix nllb * rstrip removed * small fixes * better handle additional_special_tokens and vocab sizes * fixing * styling * fix 4 / 21 * fixup * fix nlbb's tests * some fixes * fix t5 * fixes * style * fix canine tests * damn this is nice * nits * m2m100 nit * fixups * fixes! * fixup * stash * fix merge * revert bad change * fixup * correct order for code Llama * fix speecht5 post merge * styling * revert source of 11 fails * small nits * all changes in one go * fnet hack * fix 2 more tests * update based on main branch of tokenizers * fixup * fix VITS issues * more fixes * fix mgp test * fix camembert issues * oups camembert still has 2 failing tests * mluke fixes * decode fixes * small nits * nits * fix llama and vits * fix camembert * smal nits * more fixes when initialising a fast from a slow and etc * fix one of the last test * fix CPM tokenizer test * fixups * fix pop2piano * fixup * ⚠️ Change tokenizers required version ⚠️ * ⚠️ Change tokenizers required version ⚠️ * "tokenizers>=0.14,<0.15", don't forget smaller than * fix musicgen tests and pretraiendtokenizerfast * fix owlvit and all * update t5 * fix 800 red * fix tests * fix the fix of the fix of t5 * styling * documentation nits * cache _added_tokens_encoder * fixups * Nit * fix red tests * one last nit! * make eveything a lot simpler * Now it's over 😉 * few small nits * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * updates that work for now * tests that should no be skipped / changed and fixed next * fixup * i am ashamed * pushe the fix * update * fixups * nits * fix added_tokens_encoder * fix canine test * fix pegasus vocab * fix transfoXL * fixup * whisper needs to be fixed for train new * pegasus nits * more pegasus fixes * minor update * better error message in failed test * fix whisper failing test * fix whisper failing test * fix pegasus * fixup * fix **** pegasus * reset things * remove another file * attempts to fix the strange custome encoder and offset * nits here and there * update * fixup * nit * fix the whisper test * nits nits * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * updates based on review * some small update to potentially remove * nits * import rlu cache * Update src/transformers/tokenization_utils_base.py Co-authored-by: Lysandre Debut <hi@lysand.re> * move warning to `from_pretrained` * update tests results now that the special tokens are always added --------- Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by: Lysandre Debut <hi@lysand.re>
222 lines
8.1 KiB
Python
222 lines
8.1 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import (
|
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
|
PreTrainedTokenizerBase,
|
|
is_vision_available,
|
|
)
|
|
from transformers.pipelines import ImageClassificationPipeline, pipeline
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
nested_simplify,
|
|
require_tf,
|
|
require_torch,
|
|
require_torch_or_tf,
|
|
require_vision,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
else:
|
|
|
|
class Image:
|
|
@staticmethod
|
|
def open(*args, **kwargs):
|
|
pass
|
|
|
|
|
|
@is_pipeline_test
|
|
@require_torch_or_tf
|
|
@require_vision
|
|
class ImageClassificationPipelineTests(unittest.TestCase):
|
|
model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
|
|
tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
|
|
|
|
def get_test_pipeline(self, model, tokenizer, processor):
|
|
image_classifier = ImageClassificationPipeline(model=model, image_processor=processor, top_k=2)
|
|
examples = [
|
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
|
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
]
|
|
return image_classifier, examples
|
|
|
|
def run_pipeline_test(self, image_classifier, examples):
|
|
outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
],
|
|
)
|
|
|
|
import datasets
|
|
|
|
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
|
|
|
# Accepts URL + PIL.Image + lists
|
|
outputs = image_classifier(
|
|
[
|
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
|
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
# RGBA
|
|
dataset[0]["file"],
|
|
# LA
|
|
dataset[1]["file"],
|
|
# L
|
|
dataset[2]["file"],
|
|
]
|
|
)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
],
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
small_model = "hf-internal-testing/tiny-random-vit"
|
|
image_classifier = pipeline("image-classification", model=small_model)
|
|
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
|
|
)
|
|
|
|
outputs = image_classifier(
|
|
[
|
|
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
],
|
|
top_k=2,
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
|
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
|
|
],
|
|
)
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
small_model = "hf-internal-testing/tiny-random-vit"
|
|
image_classifier = pipeline("image-classification", model=small_model, framework="tf")
|
|
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
|
|
)
|
|
|
|
outputs = image_classifier(
|
|
[
|
|
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
],
|
|
top_k=2,
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
|
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
|
|
],
|
|
)
|
|
|
|
def test_custom_tokenizer(self):
|
|
tokenizer = PreTrainedTokenizerBase()
|
|
|
|
# Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
|
|
image_classifier = pipeline(
|
|
"image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer
|
|
)
|
|
|
|
self.assertIs(image_classifier.tokenizer, tokenizer)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_perceiver(self):
|
|
# Perceiver is not tested by `run_pipeline_test` properly.
|
|
# That is because the type of feature_extractor and model preprocessor need to be kept
|
|
# in sync, which is not the case in the current design
|
|
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv")
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.4385, "label": "tabby, tabby cat"},
|
|
{"score": 0.321, "label": "tiger cat"},
|
|
{"score": 0.0502, "label": "Egyptian cat"},
|
|
{"score": 0.0137, "label": "crib, cot"},
|
|
{"score": 0.007, "label": "radiator"},
|
|
],
|
|
)
|
|
|
|
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier")
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.5658, "label": "tabby, tabby cat"},
|
|
{"score": 0.1309, "label": "tiger cat"},
|
|
{"score": 0.0722, "label": "Egyptian cat"},
|
|
{"score": 0.0707, "label": "remote control, remote"},
|
|
{"score": 0.0082, "label": "computer keyboard, keypad"},
|
|
],
|
|
)
|
|
|
|
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned")
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.3022, "label": "tabby, tabby cat"},
|
|
{"score": 0.2362, "label": "Egyptian cat"},
|
|
{"score": 0.1856, "label": "tiger cat"},
|
|
{"score": 0.0324, "label": "remote control, remote"},
|
|
{"score": 0.0096, "label": "quilt, comforter, comfort, puff"},
|
|
],
|
|
)
|