transformers/tests/pipelines/test_pipelines_image_classification.py
Arthur 2da8853775
🚨🚨 🚨🚨 [Tokenizer] attemp to fix add_token issues🚨🚨 🚨🚨 (#23909)
* fix test for bart. Order is correct now let's skip BPEs

* ouf

* styling

* fix bert....

* slow refactoring

* current updates

* massive refactoring

* update

* NICE!

* update to see where I am at

* updates

* update

* update

* revert

* updates

* updates

* start supporting legacy_save

* styling

* big update

* revert some changes

* nits

* nniiiiiice

* small fixes

* kinda fix t5 with new behaviour

* major update

* fixup

* fix copies

* today's updates

* fix byt5

* upfate

* update

* update

* updates

* update vocab size test

* Barthez does not use not need the fairseq offset ids

* super calll must be after

* calll super

* move all super init

* move other super init

* fixup

* nits

* more fixes

* nits

* more fixes

* nits

* more fix

* remove useless files

* ouch all of them are affected

* and more!

* small imporvements

* no more sanitize token

* more changes around unique no split tokens

* partially fix more things

* keep legacy save but add warning

* so... more fixes

* updates

* guess deberta tokenizer could be nuked

* fixup

* fixup did some bad things

* nuke it if it breaks

* remove prints and pretrain fast from slow with new format.

* fixups

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fiou

* nit

* by default specials should not be normalized?

* update

* remove brakpoint

* updates

* a lot of updates

* fixup

* fixes revert some changes to match fast

* small nits

* that makes it cleaner

* fix camembert accordingly

* update

* some lest breaking changes

* update

* fixup

* fix byt5 and whisper mostly

* some more fixes, canine's byte vocab

* fix gpt2

* fix most of the perceiver tests (4 left)

* fix layout lmv3

* fixup

* fix copies for gpt2 style

* make sure to only warn once

* fix perciever and gpt2 tests

* some more backward compatibility: also read special tokens map because some ppl use it........////.....

* fixup

* add else when reading

* nits

* fresh updates

* fix copies

* will this make everything faster?

* fixes

* more fixes

* update

* more fixes

* fixup

* is the source of truth right?

* sorry camembert for the troubles

* current updates

* fixup

* update led

* update

* fix regression

* fix single word

* more model specific fixes

* fix t5 tests

* fixup

* more comments

* update

* fix nllb

* rstrip removed

* small fixes

* better handle additional_special_tokens and vocab sizes

* fixing

* styling

* fix 4 / 21

* fixup

* fix nlbb's tests

* some fixes

* fix t5

* fixes

* style

* fix canine tests

* damn this is nice

* nits

* m2m100 nit

* fixups

* fixes!

* fixup

* stash

* fix merge

* revert bad change

* fixup

* correct order for code Llama

* fix speecht5 post merge

* styling

* revert source of 11 fails

* small nits

* all changes in one go

* fnet hack

* fix 2 more tests

* update based on main branch of tokenizers

* fixup

* fix VITS issues

* more fixes

* fix mgp test

* fix camembert issues

* oups camembert still has 2 failing tests

* mluke fixes

* decode fixes

* small nits

* nits

* fix llama and vits

* fix camembert

* smal nits

* more fixes when initialising a fast from a slow and etc

* fix one of the last test

* fix CPM tokenizer test

* fixups

* fix pop2piano

* fixup

* ⚠️ Change tokenizers required version ⚠️

* ⚠️ Change tokenizers required version ⚠️

* "tokenizers>=0.14,<0.15", don't forget smaller than

* fix musicgen tests and pretraiendtokenizerfast

* fix owlvit and all

* update t5

* fix 800 red

* fix tests

* fix the fix of the fix of t5

* styling

* documentation nits

* cache _added_tokens_encoder

* fixups

* Nit

* fix red tests

* one last nit!

* make eveything a lot simpler

* Now it's over 😉

* few small nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates that work for now

* tests that should no be skipped / changed and fixed next

* fixup

* i am ashamed

* pushe the fix

* update

* fixups

* nits

* fix added_tokens_encoder

* fix canine test

* fix pegasus vocab

* fix transfoXL

* fixup

* whisper needs to be fixed for train new

* pegasus nits

* more pegasus fixes

* minor update

* better error message in failed test

* fix whisper failing test

* fix whisper failing test

* fix pegasus

* fixup

* fix **** pegasus

* reset things

* remove another file

* attempts to fix the strange custome encoder and offset

* nits here and there

* update

* fixup

* nit

* fix the whisper test

* nits nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates based on review

* some small update to potentially remove

* nits

* import rlu cache

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* move warning to `from_pretrained`

* update tests results now that the special tokens are always added

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-18 20:28:36 +02:00

222 lines
8.1 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
PreTrainedTokenizerBase,
is_vision_available,
)
from transformers.pipelines import ImageClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_torch_or_tf
@require_vision
class ImageClassificationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
def get_test_pipeline(self, model, tokenizer, processor):
image_classifier = ImageClassificationPipeline(model=model, image_processor=processor, top_k=2)
examples = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
]
return image_classifier, examples
def run_pipeline_test(self, image_classifier, examples):
outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png")
self.assertEqual(
outputs,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
import datasets
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
# Accepts URL + PIL.Image + lists
outputs = image_classifier(
[
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
)
self.assertEqual(
outputs,
[
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
],
)
@require_torch
def test_small_model_pt(self):
small_model = "hf-internal-testing/tiny-random-vit"
image_classifier = pipeline("image-classification", model=small_model)
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
)
outputs = image_classifier(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
top_k=2,
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
],
)
@require_tf
def test_small_model_tf(self):
small_model = "hf-internal-testing/tiny-random-vit"
image_classifier = pipeline("image-classification", model=small_model, framework="tf")
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
)
outputs = image_classifier(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
top_k=2,
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
],
)
def test_custom_tokenizer(self):
tokenizer = PreTrainedTokenizerBase()
# Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
image_classifier = pipeline(
"image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer
)
self.assertIs(image_classifier.tokenizer, tokenizer)
@slow
@require_torch
def test_perceiver(self):
# Perceiver is not tested by `run_pipeline_test` properly.
# That is because the type of feature_extractor and model preprocessor need to be kept
# in sync, which is not the case in the current design
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv")
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.4385, "label": "tabby, tabby cat"},
{"score": 0.321, "label": "tiger cat"},
{"score": 0.0502, "label": "Egyptian cat"},
{"score": 0.0137, "label": "crib, cot"},
{"score": 0.007, "label": "radiator"},
],
)
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier")
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.5658, "label": "tabby, tabby cat"},
{"score": 0.1309, "label": "tiger cat"},
{"score": 0.0722, "label": "Egyptian cat"},
{"score": 0.0707, "label": "remote control, remote"},
{"score": 0.0082, "label": "computer keyboard, keypad"},
],
)
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned")
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.3022, "label": "tabby, tabby cat"},
{"score": 0.2362, "label": "Egyptian cat"},
{"score": 0.1856, "label": "tiger cat"},
{"score": 0.0324, "label": "remote control, remote"},
{"score": 0.0096, "label": "quilt, comforter, comfort, puff"},
],
)