mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* fix test for bart. Order is correct now let's skip BPEs * ouf * styling * fix bert.... * slow refactoring * current updates * massive refactoring * update * NICE! * update to see where I am at * updates * update * update * revert * updates * updates * start supporting legacy_save * styling * big update * revert some changes * nits * nniiiiiice * small fixes * kinda fix t5 with new behaviour * major update * fixup * fix copies * today's updates * fix byt5 * upfate * update * update * updates * update vocab size test * Barthez does not use not need the fairseq offset ids * super calll must be after * calll super * move all super init * move other super init * fixup * nits * more fixes * nits * more fixes * nits * more fix * remove useless files * ouch all of them are affected * and more! * small imporvements * no more sanitize token * more changes around unique no split tokens * partially fix more things * keep legacy save but add warning * so... more fixes * updates * guess deberta tokenizer could be nuked * fixup * fixup did some bad things * nuke it if it breaks * remove prints and pretrain fast from slow with new format. * fixups * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * fiou * nit * by default specials should not be normalized? * update * remove brakpoint * updates * a lot of updates * fixup * fixes revert some changes to match fast * small nits * that makes it cleaner * fix camembert accordingly * update * some lest breaking changes * update * fixup * fix byt5 and whisper mostly * some more fixes, canine's byte vocab * fix gpt2 * fix most of the perceiver tests (4 left) * fix layout lmv3 * fixup * fix copies for gpt2 style * make sure to only warn once * fix perciever and gpt2 tests * some more backward compatibility: also read special tokens map because some ppl use it........////..... * fixup * add else when reading * nits * fresh updates * fix copies * will this make everything faster? * fixes * more fixes * update * more fixes * fixup * is the source of truth right? * sorry camembert for the troubles * current updates * fixup * update led * update * fix regression * fix single word * more model specific fixes * fix t5 tests * fixup * more comments * update * fix nllb * rstrip removed * small fixes * better handle additional_special_tokens and vocab sizes * fixing * styling * fix 4 / 21 * fixup * fix nlbb's tests * some fixes * fix t5 * fixes * style * fix canine tests * damn this is nice * nits * m2m100 nit * fixups * fixes! * fixup * stash * fix merge * revert bad change * fixup * correct order for code Llama * fix speecht5 post merge * styling * revert source of 11 fails * small nits * all changes in one go * fnet hack * fix 2 more tests * update based on main branch of tokenizers * fixup * fix VITS issues * more fixes * fix mgp test * fix camembert issues * oups camembert still has 2 failing tests * mluke fixes * decode fixes * small nits * nits * fix llama and vits * fix camembert * smal nits * more fixes when initialising a fast from a slow and etc * fix one of the last test * fix CPM tokenizer test * fixups * fix pop2piano * fixup * ⚠️ Change tokenizers required version ⚠️ * ⚠️ Change tokenizers required version ⚠️ * "tokenizers>=0.14,<0.15", don't forget smaller than * fix musicgen tests and pretraiendtokenizerfast * fix owlvit and all * update t5 * fix 800 red * fix tests * fix the fix of the fix of t5 * styling * documentation nits * cache _added_tokens_encoder * fixups * Nit * fix red tests * one last nit! * make eveything a lot simpler * Now it's over 😉 * few small nits * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * updates that work for now * tests that should no be skipped / changed and fixed next * fixup * i am ashamed * pushe the fix * update * fixups * nits * fix added_tokens_encoder * fix canine test * fix pegasus vocab * fix transfoXL * fixup * whisper needs to be fixed for train new * pegasus nits * more pegasus fixes * minor update * better error message in failed test * fix whisper failing test * fix whisper failing test * fix pegasus * fixup * fix **** pegasus * reset things * remove another file * attempts to fix the strange custome encoder and offset * nits here and there * update * fixup * nit * fix the whisper test * nits nits * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * updates based on review * some small update to potentially remove * nits * import rlu cache * Update src/transformers/tokenization_utils_base.py Co-authored-by: Lysandre Debut <hi@lysand.re> * move warning to `from_pretrained` * update tests results now that the special tokens are always added --------- Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by: Lysandre Debut <hi@lysand.re>
266 lines
10 KiB
Python
266 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import os
|
|
import re
|
|
import unittest
|
|
|
|
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
|
|
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import require_tokenizers, slow
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
@require_tokenizers
|
|
class CodeGenTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
tokenizer_class = CodeGenTokenizer
|
|
rust_tokenizer_class = CodeGenTokenizerFast
|
|
test_rust_tokenizer = True
|
|
from_pretrained_kwargs = {"add_prefix_space": True}
|
|
test_seq2seq = False
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
|
|
vocab = [
|
|
"l",
|
|
"o",
|
|
"w",
|
|
"e",
|
|
"r",
|
|
"s",
|
|
"t",
|
|
"i",
|
|
"d",
|
|
"n",
|
|
"\u0120",
|
|
"\u0120l",
|
|
"\u0120n",
|
|
"\u0120lo",
|
|
"\u0120low",
|
|
"er",
|
|
"\u0120lowest",
|
|
"\u0120newer",
|
|
"\u0120wider",
|
|
"<unk>",
|
|
"<|endoftext|>",
|
|
]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
|
|
self.special_tokens_map = {"unk_token": "<unk>"}
|
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(vocab_tokens) + "\n")
|
|
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return CodeGenTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_rust_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "lower newer"
|
|
output_text = "lower newer"
|
|
return input_text, output_text
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
|
|
text = "lower newer"
|
|
bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
|
|
tokens = tokenizer.tokenize(text, add_prefix_space=True)
|
|
self.assertListEqual(tokens, bpe_tokens)
|
|
|
|
input_tokens = tokens + [tokenizer.unk_token]
|
|
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
def test_rust_and_python_full_tokenizers(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
|
|
|
|
sequence = "lower newer"
|
|
|
|
# Testing tokenization
|
|
tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
|
|
rust_tokens = rust_tokenizer.tokenize(sequence)
|
|
self.assertListEqual(tokens, rust_tokens)
|
|
|
|
# Testing conversion to ids without special tokens
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
# Testing conversion to ids with special tokens
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
|
|
ids = tokenizer.encode(sequence, add_prefix_space=True)
|
|
rust_ids = rust_tokenizer.encode(sequence)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
# Testing the unknown token
|
|
input_tokens = tokens + [rust_tokenizer.unk_token]
|
|
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
|
|
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
def test_pretokenized_inputs(self, *args, **kwargs):
|
|
# It's very difficult to mix/test pretokenization with byte-level
|
|
# And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string)
|
|
pass
|
|
|
|
def test_padding(self, max_length=15):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Simple input
|
|
s = "This is a simple input"
|
|
s2 = ["This is a simple input 1", "This is a simple input 2"]
|
|
p = ("This is a simple input", "This is a pair")
|
|
p2 = [
|
|
("This is a simple input 1", "This is a simple input 2"),
|
|
("This is a simple pair 1", "This is a simple pair 2"),
|
|
]
|
|
|
|
# Simple input tests
|
|
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")
|
|
|
|
# Simple input
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")
|
|
|
|
# Simple input
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer_r.batch_encode_plus,
|
|
s2,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
|
|
# Pair input
|
|
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")
|
|
|
|
# Pair input
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")
|
|
|
|
# Pair input
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer_r.batch_encode_plus,
|
|
p2,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
|
|
def test_padding_if_pad_token_set_slow(self):
|
|
tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>")
|
|
|
|
# Simple input
|
|
s = "This is a simple input"
|
|
s2 = ["This is a simple input looooooooong", "This is a simple input"]
|
|
p = ("This is a simple input", "This is a pair")
|
|
p2 = [
|
|
("This is a simple input loooooong", "This is a simple input"),
|
|
("This is a simple pair loooooong", "This is a simple pair"),
|
|
]
|
|
|
|
pad_token_id = tokenizer.pad_token_id
|
|
|
|
out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np")
|
|
out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np")
|
|
out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np")
|
|
out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np")
|
|
|
|
# s
|
|
# test single string max_length padding
|
|
self.assertEqual(out_s["input_ids"].shape[-1], 30)
|
|
self.assertTrue(pad_token_id in out_s["input_ids"])
|
|
self.assertTrue(0 in out_s["attention_mask"])
|
|
|
|
# s2
|
|
# test automatic padding
|
|
self.assertEqual(out_s2["input_ids"].shape[-1], 33)
|
|
# long slice doesn't have padding
|
|
self.assertFalse(pad_token_id in out_s2["input_ids"][0])
|
|
self.assertFalse(0 in out_s2["attention_mask"][0])
|
|
# short slice does have padding
|
|
self.assertTrue(pad_token_id in out_s2["input_ids"][1])
|
|
self.assertTrue(0 in out_s2["attention_mask"][1])
|
|
|
|
# p
|
|
# test single pair max_length padding
|
|
self.assertEqual(out_p["input_ids"].shape[-1], 60)
|
|
self.assertTrue(pad_token_id in out_p["input_ids"])
|
|
self.assertTrue(0 in out_p["attention_mask"])
|
|
|
|
# p2
|
|
# test automatic padding pair
|
|
self.assertEqual(out_p2["input_ids"].shape[-1], 52)
|
|
# long slice pair doesn't have padding
|
|
self.assertFalse(pad_token_id in out_p2["input_ids"][0])
|
|
self.assertFalse(0 in out_p2["attention_mask"][0])
|
|
# short slice pair does have padding
|
|
self.assertTrue(pad_token_id in out_p2["input_ids"][1])
|
|
self.assertTrue(0 in out_p2["attention_mask"][1])
|
|
|
|
def test_add_bos_token_slow(self):
|
|
bos_token = "$$$"
|
|
tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True)
|
|
|
|
s = "This is a simple input"
|
|
s2 = ["This is a simple input 1", "This is a simple input 2"]
|
|
|
|
bos_token_id = tokenizer.bos_token_id
|
|
|
|
out_s = tokenizer(s)
|
|
out_s2 = tokenizer(s2)
|
|
|
|
self.assertEqual(out_s.input_ids[0], bos_token_id)
|
|
self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids))
|
|
|
|
decode_s = tokenizer.decode(out_s.input_ids)
|
|
decode_s2 = tokenizer.batch_decode(out_s2.input_ids)
|
|
|
|
self.assertTrue(decode_s.startswith(bos_token))
|
|
self.assertTrue(all(d.startswith(bos_token) for d in decode_s2))
|
|
|
|
@slow
|
|
def test_truncation(self):
|
|
tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono")
|
|
|
|
text = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"
|
|
expected_trucated_text = "\nif len_a > len_b: result = a\nelse: result = b"
|
|
|
|
input_ids = tokenizer.encode(text)
|
|
truncation_pattern = ["^#", re.escape("<|endoftext|>"), "^'''", '^"""', "\n\n\n"]
|
|
decoded_text = tokenizer.decode(input_ids, truncate_before_pattern=truncation_pattern)
|
|
self.assertEqual(decoded_text, expected_trucated_text)
|
|
# TODO @ArthurZ outputs of the fast tokenizer are different in this case, un-related to the PR
|
|
|
|
# tokenizer has no padding token
|
|
def test_padding_different_model_input_name(self):
|
|
pass
|