transformers/docs/source/en/model_doc/sam.mdx
Younes Belkada 2da73f6302
[SAM] Correct arxiv link (#22886)
put correct link
2023-04-20 11:23:12 +02:00

96 lines
4.1 KiB
Plaintext

<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SAM
## Overview
SAM (Segment Anything Model) was proposed in [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
The model can be used to predict segmentation masks of any object of interest given an input image.
![example image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-output.png)
The abstract from the paper is the following:
*We introduce the Segment Anything (SA) project: a new task, model, and dataset for image segmentation. Using our efficient model in a data collection loop, we built the largest segmentation dataset to date (by far), with over 1 billion masks on 11M licensed and privacy respecting images. The model is designed and trained to be promptable, so it can transfer zero-shot to new image distributions and tasks. We evaluate its capabilities on numerous tasks and find that its zero-shot performance is impressive -- often competitive with or even superior to prior fully supervised results. We are releasing the Segment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and 11M images at \href{https://segment-anything.com}{https://segment-anything.com} to foster research into foundation models for computer vision.*
Tips:
- The model predicts binary masks that states the presence or not of the object of interest given an image.
- The model predicts much better results if input 2D points and/or input bounding boxes are provided
- You can prompt multiple points for the same image, and predict a single mask.
- Fine-tuning the model is not supported yet
- According to the paper, textual input should be also supported. However, at this time of writing this seems to be not supported according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844).
This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ).
The original code can be found [here](https://github.com/facebookresearch/segment-anything).
Below is an example on how to run mask generation given an image and a 2D point:
```python
from PIL import Image
import requests
from transformers import SamModelForMaskedGeneration, SamProcessor
model = SamModelForMaskedGeneration.from_pretrained("facebook/sam-vit-huge")
processsor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
input_points = [[[450, 600]]] # 2D location of a window in the image
inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(device)
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
)
scores = outputs.iou_scores
```
Resources:
- [Demo notebook](https://github.com/huggingface/notebooks/blob/main/examples/segment_anything.ipynb) for using the model
## SamConfig
[[autodoc]] SamConfig
## SamVisionConfig
[[autodoc]] SamVisionConfig
## SamMaskDecoderConfig
[[autodoc]] SamMaskDecoderConfig
## SamPromptEncoderConfig
[[autodoc]] SamPromptEncoderConfig
## SamProcessor
[[autodoc]] SamProcessor
## SamImageProcessor
[[autodoc]] SamImageProcessor
## SamModel
[[autodoc]] SamModel
- forward