mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
184 lines
12 KiB
Python
184 lines
12 KiB
Python
# Copyright 2024 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
from functools import lru_cache
|
|
|
|
from tests.test_tokenization_common import TokenizerTesterMixin, use_cache_if_possible
|
|
from transformers import SplinterTokenizerFast, is_tf_available, is_torch_available
|
|
from transformers.models.splinter import SplinterTokenizer
|
|
from transformers.testing_utils import get_tests_dir, slow
|
|
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.txt")
|
|
|
|
|
|
if is_torch_available():
|
|
FRAMEWORK = "pt"
|
|
elif is_tf_available():
|
|
FRAMEWORK = "tf"
|
|
else:
|
|
FRAMEWORK = "jax"
|
|
|
|
|
|
class SplinterTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
tokenizer_class = SplinterTokenizer
|
|
rust_tokenizer_class = SplinterTokenizerFast
|
|
space_between_special_tokens = False
|
|
test_rust_tokenizer = False
|
|
test_sentencepiece_ignore_case = False
|
|
pre_trained_model_path = "tau/splinter-base"
|
|
|
|
# Copied from transformers.models.siglip.SiglipTokenizationTest.setUp
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
super().setUpClass()
|
|
tokenizer = SplinterTokenizer(SAMPLE_VOCAB)
|
|
tokenizer.vocab["[UNK]"] = len(tokenizer.vocab)
|
|
tokenizer.vocab["[QUESTION]"] = len(tokenizer.vocab)
|
|
tokenizer.vocab["."] = len(tokenizer.vocab)
|
|
tokenizer.add_tokens("this is a test thou shall not determine rigor truly".split())
|
|
tokenizer.save_pretrained(cls.tmpdirname)
|
|
|
|
@classmethod
|
|
@use_cache_if_possible
|
|
@lru_cache(maxsize=64)
|
|
def get_tokenizer(cls, pretrained_name=None, **kwargs) -> SplinterTokenizer:
|
|
pretrained_name = pretrained_name or cls.tmpdirname
|
|
return cls.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
@classmethod
|
|
@use_cache_if_possible
|
|
@lru_cache(maxsize=64)
|
|
def get_rust_tokenizer(cls, pretrained_name=None, **kwargs) -> SplinterTokenizerFast:
|
|
pretrained_name = pretrained_name or cls.tmpdirname
|
|
return cls.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Copied from transformers.models.siglip.SiglipTokenizationTest.test_get_vocab
|
|
def test_get_vocab(self):
|
|
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
|
|
self.assertEqual(vocab_keys[0], "[PAD]")
|
|
self.assertEqual(vocab_keys[1], "[SEP]")
|
|
self.assertEqual(vocab_keys[2], "[MASK]")
|
|
|
|
# Copied from transformers.models.siglip.SiglipTokenizationTest.test_convert_token_and_id
|
|
def test_convert_token_and_id(self):
|
|
token = "[PAD]"
|
|
token_id = 0
|
|
|
|
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
|
|
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
|
|
|
|
def test_question_token_id(self):
|
|
tokenizer = self.get_tokenizer()
|
|
self.assertEqual(tokenizer.question_token_id, tokenizer.convert_tokens_to_ids(tokenizer.question_token))
|
|
|
|
# Copied from transformers.models.siglip.SiglipTokenizationTest.test_full_tokenizer
|
|
def test_full_tokenizer(self):
|
|
tokenizer = self.get_tokenizer()
|
|
test_str = "This is a test"
|
|
|
|
unk_token = tokenizer.unk_token
|
|
unk_token_id = tokenizer._convert_token_to_id_with_added_voc(unk_token)
|
|
|
|
expected_tokens = test_str.lower().split()
|
|
tokenizer.add_tokens(expected_tokens)
|
|
tokens = tokenizer.tokenize(test_str)
|
|
self.assertListEqual(tokens, expected_tokens)
|
|
|
|
# test with out of vocabulary string
|
|
tokens = tokenizer.tokenize(test_str + " oov")
|
|
self.assertListEqual(tokens, expected_tokens + [unk_token])
|
|
|
|
expected_token_ids = [13, 14, 15, 16, unk_token_id]
|
|
token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(token_ids, expected_token_ids)
|
|
|
|
tokenizer = self.get_tokenizer(basic_tokenize=False)
|
|
expected_token_ids = [13, 14, 15, 16, unk_token_id]
|
|
token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(token_ids, expected_token_ids)
|
|
|
|
# Copied from transformers.models.siglip.SiglipTokenizationTest.test_rust_and_python_full_tokenizers
|
|
def test_rust_and_python_full_tokenizers(self):
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
|
|
sequence = "I need to test this rigor"
|
|
tokens = tokenizer.tokenize(sequence, add_special_tokens=False)
|
|
rust_tokens = rust_tokenizer.tokenize(sequence, add_special_tokens=False)
|
|
self.assertListEqual(tokens, rust_tokens)
|
|
|
|
ids = tokenizer.encode(sequence)
|
|
rust_ids = rust_tokenizer.encode(sequence)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
# Copied from transformers.models.siglip.SiglipTokenizationTest.test_max_length
|
|
def test_max_length(self):
|
|
max_length = 20
|
|
tokenizer = self.get_tokenizer()
|
|
texts = ["this is a test", "I have pizza for lunch"]
|
|
tokenized = tokenizer(
|
|
text_target=texts,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
truncation=True,
|
|
return_tensors=FRAMEWORK,
|
|
)
|
|
self.assertEqual(len(tokenized["input_ids"]), len(texts))
|
|
self.assertEqual(len(tokenized["input_ids"][0]), max_length)
|
|
self.assertEqual(len(tokenized["input_ids"][1]), max_length)
|
|
self.assertEqual(len(tokenized["attention_mask"][0]), max_length)
|
|
self.assertEqual(len(tokenized["attention_mask"][1]), max_length)
|
|
self.assertEqual(len(tokenized["token_type_ids"][0]), max_length)
|
|
self.assertEqual(len(tokenized["token_type_ids"][1]), max_length)
|
|
|
|
# Copied from transformers.models.siglip.SiglipTokenizationTest.test_tokenizer_integration
|
|
# fmt:skip
|
|
@slow
|
|
def test_tokenizer_integration(self):
|
|
tokenizer = SplinterTokenizer.from_pretrained("tau/splinter-base", max_length=10)
|
|
texts = [
|
|
"The cat sat on the windowsill, watching birds in the garden.",
|
|
"She baked a delicious cake for her sister's birthday party.",
|
|
"The sun set over the horizon, painting the sky with vibrant colors.",
|
|
]
|
|
# fmt:off
|
|
expected_token_id_list = [
|
|
[101, 1109, 5855, 2068, 1113, 1103, 3751, 7956, 117, 2903, 4939, 1107, 1103, 4605, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1153, 19983, 170, 13108, 10851, 1111, 1123, 2104, 112, 188, 5913, 1710, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1109, 3336, 1383, 1166, 1103, 11385, 117, 3504, 1103, 3901, 1114, 18652, 5769, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
|
]
|
|
# fmt:on
|
|
for text, expected_token_ids in zip(texts, expected_token_id_list):
|
|
input_ids = tokenizer(text, padding="max_length").input_ids
|
|
self.assertListEqual(input_ids, expected_token_ids)
|
|
|
|
def test_special_tokens_mask_input_pairs(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequence_0 = "Encode this."
|
|
sequence_1 = "This one too please."
|
|
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
|
|
encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
|
|
encoded_sequence_dict = tokenizer.encode_plus(
|
|
sequence_0,
|
|
sequence_1,
|
|
add_special_tokens=True,
|
|
return_special_tokens_mask=True,
|
|
)
|
|
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
|
|
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
|
|
# splinter tokenizer always add cls, question_suffix, and 2 separators
|
|
# while in special_token_mask it does not seems to do that
|
|
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special) - 2)
|