transformers/tests/models/jetmoe/test_modeling_jetmoe.py
2025-04-22 11:07:34 +01:00

323 lines
13 KiB
Python

# Copyright 2024 JetMoe AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch JetMoe model."""
import gc
import unittest
import pytest
from transformers import AutoTokenizer, JetMoeConfig, is_torch_available
from transformers.testing_utils import (
backend_empty_cache,
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
JetMoeForCausalLM,
JetMoeForSequenceClassification,
JetMoeModel,
)
class JetMoeModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_key_value_heads=2,
kv_channels=8,
intermediate_size=37,
hidden_act="silu",
num_local_experts=4,
num_experts_per_tok=2,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.kv_channels = kv_channels
self.num_attention_heads = num_key_value_heads * num_experts_per_tok
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_local_experts = num_local_experts
self.num_experts_per_tok = num_experts_per_tok
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.ones(self.batch_size, self.seq_length).to(torch_device)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return JetMoeConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_key_value_heads=self.num_key_value_heads,
kv_channels=self.kv_channels,
intermediate_size=self.intermediate_size,
activation_function=self.hidden_act,
num_local_experts=self.num_local_experts,
num_experts_per_tok=self.num_experts_per_tok,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = JetMoeModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class JetMoeModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(JetMoeModel, JetMoeForCausalLM, JetMoeForSequenceClassification) if is_torch_available() else ()
)
pipeline_model_mapping = (
{
"feature-extraction": JetMoeModel,
"text-classification": JetMoeForSequenceClassification,
"text-generation": JetMoeForCausalLM,
"zero-shot": JetMoeForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
test_mismatched_shapes = False
test_cpu_offload = False
test_disk_offload_bin = False
test_disk_offload_safetensors = False
def setUp(self):
self.model_tester = JetMoeModelTester(self)
self.config_tester = ConfigTester(
self, config_class=JetMoeConfig, common_properties=["hidden_size", "num_hidden_layers"]
)
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_config
def test_config(self):
self.config_tester.run_common_tests()
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model_various_embeddings
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model with llama->jetmoe, Llama->JetMoe
def test_jetmoe_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = JetMoeForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_single_label with llama->jetmoe, Llama->JetMoe
def test_jetmoe_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = JetMoeForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_multi_label with llama->jetmoe, Llama->JetMoe
def test_jetmoe_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = JetMoeForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_equivalence_right_padding(self):
self.skipTest(reason="JetMoe flash attention does not support right padding")
@require_torch
class JetMoeIntegrationTest(unittest.TestCase):
@slow
def test_model_8b_logits(self):
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
model = JetMoeForCausalLM.from_pretrained("jetmoe/jetmoe-8b")
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
with torch.no_grad():
out = model(input_ids).logits.float().cpu()
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor([[0.2507, -2.7073, -1.3445, -1.9363, -1.7216, -1.7370, -1.9054, -1.9792]])
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
# slicing logits[0, 0, 0:30]
EXPECTED_SLICE = torch.tensor([-3.3689, 5.9006, 5.7450, -1.7012, -4.7072, -4.7071, -4.7071, -4.7071, -4.7072, -4.7072, -4.7072, -4.7071, 3.8321, 9.1746, -4.7071, -4.7072, -4.7071, -4.7072, -4.7071, -4.7072, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071]) # fmt: skip
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
del model
backend_empty_cache(torch_device)
gc.collect()
@slow
def test_model_8b_generation(self):
EXPECTED_TEXT_COMPLETION = """My favourite condiment is ....\nI love ketchup. I love"""
prompt = "My favourite condiment is "
tokenizer = AutoTokenizer.from_pretrained("jetmoe/jetmoe-8b", use_fast=False)
model = JetMoeForCausalLM.from_pretrained("jetmoe/jetmoe-8b")
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
# greedy generation outputs
generated_ids = model.generate(input_ids, max_new_tokens=10, temperature=0)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
del model
backend_empty_cache(torch_device)
gc.collect()
@slow
def test_model_8b_batched_generation(self):
EXPECTED_TEXT_COMPLETION = [
"""My favourite condiment is ....\nI love ketchup. I love""",
"""My favourite 2018 Christmas present was a new pair""",
]
prompt = [
"My favourite condiment is ",
"My favourite ",
]
tokenizer = AutoTokenizer.from_pretrained("jetmoe/jetmoe-8b", use_fast=False)
model = JetMoeForCausalLM.from_pretrained("jetmoe/jetmoe-8b")
input_ids = tokenizer(prompt, return_tensors="pt", padding=True).to(model.model.embed_tokens.weight.device)
print(input_ids)
# greedy generation outputs
generated_ids = model.generate(**input_ids, max_new_tokens=10, temperature=0)
text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(text)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
del model
backend_empty_cache(torch_device)
gc.collect()