transformers/tests/models/bitnet/test_modeling_bitnet.py
Mohamed Mekkouri b262680af4
Add Bitnet model (#37742)
* Adding BitNet b1.58 Model

* Add testing code for BitNet

* Fix format issues

* Fix docstring format issues

* Fix docstring

* Fix docstring

* Fix: weight back to uint8

* Fix

* Fix format issues

* Remove copy comments

* Add model link to the docstring

* Fix: set tie_word_embeddings default to false

* Update

* Generate modeling file

* Change config name for automatically generating modeling file.

* Generate modeling file

* Fix class name

* Change testing branch

* Remove unused param

* Fix config docstring

* Add docstring for BitNetQuantConfig.

* Fix docstring

* Update docs/source/en/model_doc/bitnet.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update docs/source/en/model_doc/bitnet.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update bitnet config

* Update explanation between online and offline mode

* Remove space

* revert changes

* more revert

* spaces

* update

* fix-copies

* doc fix

* fix minor nits

* empty

* small nit

* empty

---------

Co-authored-by: Shuming Ma <shumingma@pku.edu.cn>
Co-authored-by: shumingma <shmingm@gmail.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-28 15:08:46 +02:00

254 lines
8.9 KiB
Python

# Copyright 2025 The BitNet team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch BitNet model."""
import gc
import unittest
import pytest
from transformers import AutoTokenizer, BitNetConfig, is_torch_available
from transformers.testing_utils import (
backend_empty_cache,
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BitNetForCausalLM,
BitNetModel,
)
class BitNetModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
vocab_size=99,
hidden_size=64,
num_hidden_layers=5,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="gelu",
max_position_embeddings=512,
initializer_range=0.02,
pad_token_id=0,
bos_token_id=1,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return BitNetConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
bos_token_id=self.bos_token_id,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = BitNetModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class BitNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
BitNetModel,
BitNetForCausalLM,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": BitNetModel,
"text-generation": BitNetForCausalLM,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
fx_compatible = False # Broken by attention refactor cc @Cyrilvallez
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
return True
def setUp(self):
self.model_tester = BitNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=BitNetConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_torch_fx_output_loss(self):
super().test_torch_fx_output_loss()
# Ignore copy
def test_past_key_values_format(self):
super().test_past_key_values_format()
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_equivalence_right_padding(self):
self.skipTest(reason="BitNet flash attention does not support right padding")
@require_torch
class BitNetIntegrationTest(unittest.TestCase):
@slow
def test_model_logits(self):
input_ids = [128000, 128000, 1502, 25, 2650, 527, 499, 30, 128009, 72803, 25, 220]
model = BitNetForCausalLM.from_pretrained("microsoft/bitnet-b1.58-2B-4T")
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
with torch.no_grad():
out = model(input_ids).logits.float().cpu()
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor(
[
[
-1.8665,
-1.7681,
-1.7043,
3.7446,
2.7730,
4.7133,
0.9768,
-3.5018,
-12.2812,
-8.1477,
-10.2571,
-8.7610,
]
]
)
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
# slicing logits[0, 0, 0:30]
EXPECTED_SLICE = torch.tensor([5.5815, 4.9154, 1.0478, 4.3869, 3.0112, 0.8235, 3.8412, 2.9233, 8.1140, 1.9406, 1.7973, 10.5025, 4.7796, 8.5926, 4.5196, 3.1549, 3.2656, 3.2588, 2.7356, 2.6032, 2.1454, 1.5683, 1.3465, 1.5329, 1.1886, 7.7902, 5.9326, 1.4737, 3.3319, 1.6291]) # fmt: skip
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
del model
backend_empty_cache(torch_device)
gc.collect()
@slow
def test_model_generation(self):
EXPECTED_TEXT_COMPLETION = """User: What is your favourite food?Assistant: As an AI, I don't have personal preferences or the ability to eat food. However, I"""
tokenizer = AutoTokenizer.from_pretrained("microsoft/bitnet-b1.58-2B-4T")
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": "What is your favourite food?"}], add_generation_prompt=True, tokenize=False
)
model = BitNetForCausalLM.from_pretrained(
"microsoft/bitnet-b1.58-2B-4T", device_map="auto", torch_dtype=torch.bfloat16
)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
# greedy generation outputs
generated_ids = model.generate(input_ids, max_new_tokens=20, do_sample=False)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
del model
backend_empty_cache(torch_device)
gc.collect()