mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* Adding BitNet b1.58 Model * Add testing code for BitNet * Fix format issues * Fix docstring format issues * Fix docstring * Fix docstring * Fix: weight back to uint8 * Fix * Fix format issues * Remove copy comments * Add model link to the docstring * Fix: set tie_word_embeddings default to false * Update * Generate modeling file * Change config name for automatically generating modeling file. * Generate modeling file * Fix class name * Change testing branch * Remove unused param * Fix config docstring * Add docstring for BitNetQuantConfig. * Fix docstring * Update docs/source/en/model_doc/bitnet.md Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com> * Update docs/source/en/model_doc/bitnet.md Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update bitnet config * Update explanation between online and offline mode * Remove space * revert changes * more revert * spaces * update * fix-copies * doc fix * fix minor nits * empty * small nit * empty --------- Co-authored-by: Shuming Ma <shumingma@pku.edu.cn> Co-authored-by: shumingma <shmingm@gmail.com> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
254 lines
8.9 KiB
Python
254 lines
8.9 KiB
Python
# Copyright 2025 The BitNet team and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch BitNet model."""
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoTokenizer, BitNetConfig, is_torch_available
|
|
from transformers.testing_utils import (
|
|
backend_empty_cache,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
BitNetForCausalLM,
|
|
BitNetModel,
|
|
)
|
|
|
|
|
|
class BitNetModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
vocab_size=99,
|
|
hidden_size=64,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
num_key_value_heads=2,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask
|
|
|
|
def get_config(self):
|
|
return BitNetConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_key_value_heads=self.num_key_value_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask):
|
|
model = BitNetModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class BitNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
BitNetModel,
|
|
BitNetForCausalLM,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": BitNetModel,
|
|
"text-generation": BitNetForCausalLM,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
fx_compatible = False # Broken by attention refactor cc @Cyrilvallez
|
|
|
|
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
|
|
def is_pipeline_test_to_skip(
|
|
self,
|
|
pipeline_test_case_name,
|
|
config_class,
|
|
model_architecture,
|
|
tokenizer_name,
|
|
image_processor_name,
|
|
feature_extractor_name,
|
|
processor_name,
|
|
):
|
|
return True
|
|
|
|
def setUp(self):
|
|
self.model_tester = BitNetModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=BitNetConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_torch_fx_output_loss(self):
|
|
super().test_torch_fx_output_loss()
|
|
|
|
# Ignore copy
|
|
def test_past_key_values_format(self):
|
|
super().test_past_key_values_format()
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest(reason="BitNet flash attention does not support right padding")
|
|
|
|
|
|
@require_torch
|
|
class BitNetIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_model_logits(self):
|
|
input_ids = [128000, 128000, 1502, 25, 2650, 527, 499, 30, 128009, 72803, 25, 220]
|
|
model = BitNetForCausalLM.from_pretrained("microsoft/bitnet-b1.58-2B-4T")
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
with torch.no_grad():
|
|
out = model(input_ids).logits.float().cpu()
|
|
# Expected mean on dim = -1
|
|
EXPECTED_MEAN = torch.tensor(
|
|
[
|
|
[
|
|
-1.8665,
|
|
-1.7681,
|
|
-1.7043,
|
|
3.7446,
|
|
2.7730,
|
|
4.7133,
|
|
0.9768,
|
|
-3.5018,
|
|
-12.2812,
|
|
-8.1477,
|
|
-10.2571,
|
|
-8.7610,
|
|
]
|
|
]
|
|
)
|
|
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
|
|
# slicing logits[0, 0, 0:30]
|
|
EXPECTED_SLICE = torch.tensor([5.5815, 4.9154, 1.0478, 4.3869, 3.0112, 0.8235, 3.8412, 2.9233, 8.1140, 1.9406, 1.7973, 10.5025, 4.7796, 8.5926, 4.5196, 3.1549, 3.2656, 3.2588, 2.7356, 2.6032, 2.1454, 1.5683, 1.3465, 1.5329, 1.1886, 7.7902, 5.9326, 1.4737, 3.3319, 1.6291]) # fmt: skip
|
|
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
|
|
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
@slow
|
|
def test_model_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = """User: What is your favourite food?Assistant: As an AI, I don't have personal preferences or the ability to eat food. However, I"""
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/bitnet-b1.58-2B-4T")
|
|
prompt = tokenizer.apply_chat_template(
|
|
[{"role": "user", "content": "What is your favourite food?"}], add_generation_prompt=True, tokenize=False
|
|
)
|
|
model = BitNetForCausalLM.from_pretrained(
|
|
"microsoft/bitnet-b1.58-2B-4T", device_map="auto", torch_dtype=torch.bfloat16
|
|
)
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=20, do_sample=False)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|