mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-18 20:18:24 +06:00
1671 lines
75 KiB
Python
1671 lines
75 KiB
Python
# coding=utf-8
|
|
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch XLM model.
|
|
"""
|
|
from __future__ import (absolute_import, division, print_function,
|
|
unicode_literals)
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import copy
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
from io import open
|
|
|
|
import math
|
|
import itertools
|
|
import numpy as np
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
|
|
from .file_utils import cached_path
|
|
from .model_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
PRETRAINED_MODEL_ARCHIVE_MAP = {
|
|
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
|
|
}
|
|
PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
|
|
}
|
|
|
|
DECODER_ONLY_PARAMS = [
|
|
'layer_norm15.%i.weight', 'layer_norm15.%i.bias',
|
|
'encoder_attn.%i.q_lin.weight', 'encoder_attn.%i.q_lin.bias',
|
|
'encoder_attn.%i.k_lin.weight', 'encoder_attn.%i.k_lin.bias',
|
|
'encoder_attn.%i.v_lin.weight', 'encoder_attn.%i.v_lin.bias',
|
|
'encoder_attn.%i.out_lin.weight', 'encoder_attn.%i.out_lin.bias'
|
|
]
|
|
|
|
TRANSFORMER_LAYER_PARAMS = [
|
|
'attentions.%i.q_lin.weight', 'attentions.%i.q_lin.bias',
|
|
'attentions.%i.k_lin.weight', 'attentions.%i.k_lin.bias',
|
|
'attentions.%i.v_lin.weight', 'attentions.%i.v_lin.bias',
|
|
'attentions.%i.out_lin.weight', 'attentions.%i.out_lin.bias',
|
|
'layer_norm1.%i.weight', 'layer_norm1.%i.bias',
|
|
'ffns.%i.lin1.weight', 'ffns.%i.lin1.bias',
|
|
'ffns.%i.lin2.weight', 'ffns.%i.lin2.bias',
|
|
'layer_norm2.%i.weight', 'layer_norm2.%i.bias'
|
|
]
|
|
|
|
class XLMConfig(PretrainedConfig):
|
|
"""Configuration class to store the configuration of a `XLMModel`.
|
|
"""
|
|
pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
|
|
|
|
def __init__(self,
|
|
vocab_size_or_config_json_file,
|
|
d_model=1024,
|
|
n_layer=24,
|
|
n_head=16,
|
|
d_inner=4096,
|
|
ff_activation="gelu",
|
|
untie_r=True,
|
|
attn_type="bi",
|
|
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
layer_norm_eps=1e-12,
|
|
|
|
dropout=0.1,
|
|
dropatt=0.1,
|
|
init="normal",
|
|
init_range=0.1,
|
|
init_std=0.02,
|
|
mem_len=None,
|
|
reuse_len=None,
|
|
bi_data=False,
|
|
clamp_len=-1,
|
|
same_length=False):
|
|
"""Constructs XLMConfig.
|
|
|
|
Args:
|
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
|
|
d_model: Size of the encoder layers and the pooler layer.
|
|
n_layer: Number of hidden layers in the Transformer encoder.
|
|
n_head: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
d_inner: The size of the "intermediate" (i.e., feed-forward)
|
|
layer in the Transformer encoder.
|
|
ff_activation: The non-linear activation function (function or string) in the
|
|
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
|
|
untie_r: untie relative position biases
|
|
attn_type: 'bi' for XLM, 'uni' for Transformer-XL
|
|
|
|
dropout: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
dropatt: The dropout ratio for the attention
|
|
probabilities.
|
|
max_position_embeddings: The maximum sequence length that this model might
|
|
ever be used with. Typically set this to something large just in case
|
|
(e.g., 512 or 1024 or 2048).
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
layer_norm_eps: The epsilon used by LayerNorm.
|
|
|
|
dropout: float, dropout rate.
|
|
dropatt: float, dropout rate on attention probabilities.
|
|
init: str, the initialization scheme, either "normal" or "uniform".
|
|
init_range: float, initialize the parameters with a uniform distribution
|
|
in [-init_range, init_range]. Only effective when init="uniform".
|
|
init_std: float, initialize the parameters with a normal distribution
|
|
with mean 0 and stddev init_std. Only effective when init="normal".
|
|
mem_len: int, the number of tokens to cache.
|
|
reuse_len: int, the number of tokens in the currect batch to be cached
|
|
and reused in the future.
|
|
bi_data: bool, whether to use bidirectional input pipeline.
|
|
Usually set to True during pretraining and False during finetuning.
|
|
clamp_len: int, clamp all relative distances larger than clamp_len.
|
|
-1 means no clamping.
|
|
same_length: bool, whether to use the same attention length for each token.
|
|
"""
|
|
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
|
|
and isinstance(vocab_size_or_config_json_file, unicode)):
|
|
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
|
|
json_config = json.loads(reader.read())
|
|
for key, value in json_config.items():
|
|
self.__dict__[key] = value
|
|
elif isinstance(vocab_size_or_config_json_file, int):
|
|
self.n_token = vocab_size_or_config_json_file
|
|
self.d_model = d_model
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
assert d_model % n_head == 0
|
|
self.d_head = d_model // n_head
|
|
self.ff_activation = ff_activation
|
|
self.d_inner = d_inner
|
|
self.untie_r = untie_r
|
|
self.attn_type = attn_type
|
|
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.layer_norm_eps = layer_norm_eps
|
|
|
|
self.init = init
|
|
self.init_range = init_range
|
|
self.init_std = init_std
|
|
self.dropout = dropout
|
|
self.dropatt = dropatt
|
|
self.mem_len = mem_len
|
|
self.reuse_len = reuse_len
|
|
self.bi_data = bi_data
|
|
self.clamp_len = clamp_len
|
|
self.same_length = same_length
|
|
else:
|
|
raise ValueError("First argument must be either a vocabulary size (int)"
|
|
"or the path to a pretrained model config file (str)")
|
|
|
|
|
|
try:
|
|
from apex.normalization.fused_layer_norm import FusedLayerNorm as XLMLayerNorm
|
|
except ImportError:
|
|
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
|
|
class XLMLayerNorm(nn.Module):
|
|
def __init__(self, d_model, eps=1e-12):
|
|
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
|
"""
|
|
super(XLMLayerNorm, self).__init__()
|
|
self.weight = nn.Parameter(torch.ones(d_model))
|
|
self.bias = nn.Parameter(torch.zeros(d_model))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, x):
|
|
u = x.mean(-1, keepdim=True)
|
|
s = (x - u).pow(2).mean(-1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
|
return self.weight * x + self.bias
|
|
|
|
|
|
def Embedding(num_embeddings, embedding_dim, padding_idx=None):
|
|
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
|
|
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
|
|
if padding_idx is not None:
|
|
nn.init.constant_(m.weight[padding_idx], 0)
|
|
return m
|
|
|
|
|
|
def Linear(in_features, out_features, bias=True):
|
|
m = nn.Linear(in_features, out_features, bias)
|
|
# nn.init.normal_(m.weight, mean=0, std=1)
|
|
# nn.init.xavier_uniform_(m.weight)
|
|
# nn.init.constant_(m.bias, 0.)
|
|
return m
|
|
|
|
|
|
def create_sinusoidal_embeddings(n_pos, dim, out):
|
|
position_enc = np.array([
|
|
[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
|
|
for pos in range(n_pos)
|
|
])
|
|
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
|
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
|
out.detach_()
|
|
out.requires_grad = False
|
|
|
|
|
|
def gelu(x):
|
|
"""
|
|
GELU activation
|
|
https://arxiv.org/abs/1606.08415
|
|
https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
|
|
https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/modeling.py
|
|
"""
|
|
# return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
|
|
|
|
|
def get_masks(slen, lengths, causal):
|
|
"""
|
|
Generate hidden states mask, and optionally an attention mask.
|
|
"""
|
|
assert lengths.max().item() <= slen
|
|
bs = lengths.size(0)
|
|
alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
|
|
mask = alen < lengths[:, None]
|
|
|
|
# attention mask is the same as mask, or triangular inferior attention (causal)
|
|
if causal:
|
|
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
|
|
else:
|
|
attn_mask = mask
|
|
|
|
# sanity check
|
|
assert mask.size() == (bs, slen)
|
|
assert causal is False or attn_mask.size() == (bs, slen, slen)
|
|
|
|
return mask, attn_mask
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
|
|
NEW_ID = itertools.count()
|
|
|
|
def __init__(self, n_heads, dim, dropout):
|
|
super().__init__()
|
|
self.layer_id = next(MultiHeadAttention.NEW_ID)
|
|
self.dim = dim
|
|
self.n_heads = n_heads
|
|
self.dropout = dropout
|
|
assert self.dim % self.n_heads == 0
|
|
|
|
self.q_lin = Linear(dim, dim)
|
|
self.k_lin = Linear(dim, dim)
|
|
self.v_lin = Linear(dim, dim)
|
|
self.out_lin = Linear(dim, dim)
|
|
|
|
def forward(self, input, mask, kv=None, cache=None):
|
|
"""
|
|
Self-attention (if kv is None) or attention over source sentence (provided by kv).
|
|
"""
|
|
# Input is (bs, qlen, dim)
|
|
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
|
|
bs, qlen, dim = input.size()
|
|
if kv is None:
|
|
klen = qlen if cache is None else cache['slen'] + qlen
|
|
else:
|
|
klen = kv.size(1)
|
|
assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
|
|
n_heads = self.n_heads
|
|
dim_per_head = dim // n_heads
|
|
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)
|
|
|
|
def shape(x):
|
|
""" projection """
|
|
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
|
|
|
|
def unshape(x):
|
|
""" compute context """
|
|
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
|
|
|
|
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
|
if kv is None:
|
|
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
|
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
|
elif cache is None or self.layer_id not in cache:
|
|
k = v = kv
|
|
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
|
|
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
|
|
|
|
if cache is not None:
|
|
if self.layer_id in cache:
|
|
if kv is None:
|
|
k_, v_ = cache[self.layer_id]
|
|
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head)
|
|
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head)
|
|
else:
|
|
k, v = cache[self.layer_id]
|
|
cache[self.layer_id] = (k, v)
|
|
|
|
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head)
|
|
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen)
|
|
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen)
|
|
scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen)
|
|
|
|
weights = F.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen)
|
|
weights = F.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen)
|
|
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
|
|
context = unshape(context) # (bs, qlen, dim)
|
|
|
|
return self.out_lin(context)
|
|
|
|
|
|
class TransformerFFN(nn.Module):
|
|
|
|
def __init__(self, in_dim, dim_hidden, out_dim, dropout, gelu_activation):
|
|
super().__init__()
|
|
self.dropout = dropout
|
|
self.lin1 = Linear(in_dim, dim_hidden)
|
|
self.lin2 = Linear(dim_hidden, out_dim)
|
|
self.act = gelu if gelu_activation else F.relu
|
|
|
|
def forward(self, input):
|
|
x = self.lin1(input)
|
|
x = self.act(x)
|
|
x = self.lin2(x)
|
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
|
return x
|
|
|
|
|
|
class BeamHypotheses(object):
|
|
|
|
def __init__(self, n_hyp, max_len, length_penalty, early_stopping):
|
|
"""
|
|
Initialize n-best list of hypotheses.
|
|
"""
|
|
self.max_len = max_len - 1 # ignoring <BOS>
|
|
self.length_penalty = length_penalty
|
|
self.early_stopping = early_stopping
|
|
self.n_hyp = n_hyp
|
|
self.hyp = []
|
|
self.worst_score = 1e9
|
|
|
|
def __len__(self):
|
|
"""
|
|
Number of hypotheses in the list.
|
|
"""
|
|
return len(self.hyp)
|
|
|
|
def add(self, hyp, sum_logprobs):
|
|
"""
|
|
Add a new hypothesis to the list.
|
|
"""
|
|
score = sum_logprobs / len(hyp) ** self.length_penalty
|
|
if len(self) < self.n_hyp or score > self.worst_score:
|
|
self.hyp.append((score, hyp))
|
|
if len(self) > self.n_hyp:
|
|
sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)])
|
|
del self.hyp[sorted_scores[0][1]]
|
|
self.worst_score = sorted_scores[1][0]
|
|
else:
|
|
self.worst_score = min(score, self.worst_score)
|
|
|
|
def is_done(self, best_sum_logprobs):
|
|
"""
|
|
If there are enough hypotheses and that none of the hypotheses being generated
|
|
can become better than the worst one in the heap, then we are done with this sentence.
|
|
"""
|
|
if len(self) < self.n_hyp:
|
|
return False
|
|
elif self.early_stopping:
|
|
return True
|
|
else:
|
|
return self.worst_score >= best_sum_logprobs / self.max_len ** self.length_penalty
|
|
|
|
|
|
class XLMPreTrainedModel(PreTrainedModel):
|
|
""" An abstract class to handle weights initialization and
|
|
a simple interface for dowloading and loading pretrained models.
|
|
"""
|
|
config_class = XLMConfig
|
|
pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
|
|
pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
|
|
load_tf_weights = None
|
|
base_model_prefix = "xlm"
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
|
|
|
|
def init_weights(self, module):
|
|
""" Initialize the weights.
|
|
"""
|
|
if isinstance(module, (nn.Linear, nn.Embedding)):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
elif isinstance(module, XLMLayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
elif isinstance(module, XLMRelativeAttention):
|
|
for param in [module.q, module.k, module.v, module.o, module.r,
|
|
module.r_r_bias, module.r_s_bias, module.r_w_bias,
|
|
module.seg_embed]:
|
|
param.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
|
module.bias.data.zero_()
|
|
|
|
|
|
class XLMModel(XLMPreTrainedModel):
|
|
|
|
ATTRIBUTES = ['encoder', 'eos_index', 'pad_index', # 'with_output',
|
|
'n_langs', 'n_words', 'dim', 'n_layers', 'n_heads',
|
|
'hidden_dim', 'dropout', 'attention_dropout', 'asm',
|
|
'asm_cutoffs', 'asm_div_value']
|
|
|
|
def __init__(self, params, output_attentions=False, keep_multihead_output=False): #, dico, is_encoder, with_output):
|
|
""" XLM model from: "Cross-lingual Language Model Pretraining" by Guillaume Lample, Alexis Conneau
|
|
Paper: https://arxiv.org/abs/1901.07291
|
|
Original code: https://github.com/facebookresearch/XLM
|
|
|
|
Params:
|
|
`config`: a XLMConfig class instance with the configuration to build a new model
|
|
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
|
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
|
This can be used to compute head importance metrics. Default: False
|
|
|
|
Inputs:
|
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
|
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
|
`run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
|
|
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
|
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
|
a `sentence B` token (see XLM paper for more details).
|
|
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
|
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
|
input sequence length in the current batch. It's the mask that we typically use for attention when
|
|
a batch has varying length sentences.
|
|
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
|
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
|
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
|
|
|
|
|
Outputs: Tuple of (encoded_layers, pooled_output)
|
|
`encoded_layers`: controled by `output_all_encoded_layers` argument:
|
|
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
|
of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
|
|
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
|
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
|
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
|
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
|
classifier pretrained on top of the hidden state associated to the first character of the
|
|
input (`CLS`) to train on the Next-Sentence task (see XLM's paper).
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into WordPiece token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
|
|
|
config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
|
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
|
|
|
model = modeling.XLMModel(config=config)
|
|
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
|
```
|
|
"""
|
|
super(XLMModel, self).__init__(params)
|
|
self.output_attentions = output_attentions
|
|
|
|
# encoder / decoder, output layer
|
|
# self.is_encoder = is_encoder
|
|
# self.is_decoder = not is_encoder
|
|
# self.with_output = with_output
|
|
|
|
# dictionary / languages
|
|
self.n_langs = params.n_langs
|
|
self.n_words = params.n_words
|
|
self.eos_index = params.eos_index
|
|
self.pad_index = params.pad_index
|
|
# self.dico = dico
|
|
self.id2lang = params.id2lang
|
|
self.lang2id = params.lang2id
|
|
# assert len(self.dico) == self.n_words
|
|
assert len(self.id2lang) == len(self.lang2id) == self.n_langs
|
|
|
|
# model parameters
|
|
self.dim = params.emb_dim # 512 by default
|
|
self.hidden_dim = self.dim * 4 # 2048 by default
|
|
self.n_heads = params.n_heads # 8 by default
|
|
self.n_layers = params.n_layers
|
|
self.dropout = params.dropout
|
|
self.attention_dropout = params.attention_dropout
|
|
assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'
|
|
|
|
# embeddings
|
|
self.position_embeddings = Embedding(params.max_position_embeddings, self.dim)
|
|
if params.sinusoidal_embeddings:
|
|
create_sinusoidal_embeddings(params.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
|
|
if params.n_langs > 1:
|
|
self.lang_embeddings = Embedding(self.n_langs, self.dim)
|
|
self.embeddings = Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
|
|
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=1e-12)
|
|
|
|
# transformer layers
|
|
self.attentions = nn.ModuleList()
|
|
self.layer_norm1 = nn.ModuleList()
|
|
self.ffns = nn.ModuleList()
|
|
self.layer_norm2 = nn.ModuleList()
|
|
if self.is_decoder:
|
|
self.layer_norm15 = nn.ModuleList()
|
|
self.encoder_attn = nn.ModuleList()
|
|
|
|
for _ in range(self.n_layers):
|
|
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
|
|
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=1e-12))
|
|
if self.is_decoder:
|
|
self.layer_norm15.append(nn.LayerNorm(self.dim, eps=1e-12))
|
|
self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
|
|
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, dropout=self.dropout, gelu_activation=params.gelu_activation))
|
|
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=1e-12))
|
|
|
|
# output layer
|
|
# if self.with_output:
|
|
# self.pred_layer = PredLayer(params)
|
|
# if params.share_inout_emb:
|
|
# self.pred_layer.proj.weight = self.embeddings.weight
|
|
|
|
# def forward(self, mode, **kwargs):
|
|
# """
|
|
# Forward function with different forward modes.
|
|
# ### Small hack to handle PyTorch distributed.
|
|
# """
|
|
# if mode == 'fwd':
|
|
# return self.fwd(**kwargs)
|
|
# elif mode == 'predict':
|
|
# return self.predict(**kwargs)
|
|
# else:
|
|
# raise Exception("Unknown mode: %s" % mode)
|
|
|
|
def forward(self, x, lengths, causal, src_enc=None, src_len=None, positions=None, langs=None, cache=None):
|
|
"""
|
|
Inputs:
|
|
`x` LongTensor(slen, bs), containing word indices
|
|
`lengths` LongTensor(bs), containing the length of each sentence
|
|
`causal` Boolean, if True, the attention is only done over previous hidden states
|
|
`positions` LongTensor(slen, bs), containing word positions
|
|
`langs` LongTensor(slen, bs), containing language IDs
|
|
"""
|
|
# lengths = (x != self.pad_index).float().sum(dim=1)
|
|
# mask = x != self.pad_index
|
|
|
|
# check inputs
|
|
slen, bs = x.size()
|
|
assert lengths.size(0) == bs
|
|
assert lengths.max().item() <= slen
|
|
x = x.transpose(0, 1) # batch size as dimension 0
|
|
assert (src_enc is None) == (src_len is None)
|
|
if src_enc is not None:
|
|
assert self.is_decoder
|
|
assert src_enc.size(0) == bs
|
|
|
|
# generate masks
|
|
mask, attn_mask = get_masks(slen, lengths, causal)
|
|
if self.is_decoder and src_enc is not None:
|
|
src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
|
|
|
|
# positions
|
|
if positions is None:
|
|
positions = x.new(slen).long()
|
|
positions = torch.arange(slen, out=positions).unsqueeze(0)
|
|
else:
|
|
assert positions.size() == (slen, bs)
|
|
positions = positions.transpose(0, 1)
|
|
|
|
# langs
|
|
if langs is not None:
|
|
assert langs.size() == (slen, bs)
|
|
langs = langs.transpose(0, 1)
|
|
|
|
# do not recompute cached elements
|
|
if cache is not None:
|
|
_slen = slen - cache['slen']
|
|
x = x[:, -_slen:]
|
|
positions = positions[:, -_slen:]
|
|
if langs is not None:
|
|
langs = langs[:, -_slen:]
|
|
mask = mask[:, -_slen:]
|
|
attn_mask = attn_mask[:, -_slen:]
|
|
|
|
# embeddings
|
|
tensor = self.embeddings(x)
|
|
tensor = tensor + self.position_embeddings(positions).expand_as(tensor)
|
|
if langs is not None:
|
|
tensor = tensor + self.lang_embeddings(langs)
|
|
tensor = self.layer_norm_emb(tensor)
|
|
tensor = F.dropout(tensor, p=self.dropout, training=self.training)
|
|
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
|
|
|
# transformer layers
|
|
for i in range(self.n_layers):
|
|
|
|
# self attention
|
|
attn = self.attentions[i](tensor, attn_mask, cache=cache)
|
|
attn = F.dropout(attn, p=self.dropout, training=self.training)
|
|
tensor = tensor + attn
|
|
tensor = self.layer_norm1[i](tensor)
|
|
|
|
# encoder attention (for decoder only)
|
|
if self.is_decoder and src_enc is not None:
|
|
attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
|
|
attn = F.dropout(attn, p=self.dropout, training=self.training)
|
|
tensor = tensor + attn
|
|
tensor = self.layer_norm15[i](tensor)
|
|
|
|
# FFN
|
|
tensor = tensor + self.ffns[i](tensor)
|
|
tensor = self.layer_norm2[i](tensor)
|
|
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
|
|
|
# update cache length
|
|
if cache is not None:
|
|
cache['slen'] += tensor.size(1)
|
|
|
|
# move back sequence length to dimension 0
|
|
tensor = tensor.transpose(0, 1)
|
|
|
|
return tensor
|
|
|
|
def predict(self, tensor, pred_mask, y, get_scores):
|
|
"""
|
|
Given the last hidden state, compute word scores and/or the loss.
|
|
`pred_mask` is a ByteTensor of shape (slen, bs), filled with 1 when
|
|
we need to predict a word
|
|
`y` is a LongTensor of shape (pred_mask.sum(),)
|
|
`get_scores` is a boolean specifying whether we need to return scores
|
|
"""
|
|
masked_tensor = tensor[pred_mask.unsqueeze(-1).expand_as(tensor)].view(-1, self.dim)
|
|
scores, loss = self.pred_layer(masked_tensor, y, get_scores)
|
|
return scores, loss
|
|
|
|
def generate(self, src_enc, src_len, tgt_lang_id, max_len=200, sample_temperature=None):
|
|
"""
|
|
Decode a sentence given initial start.
|
|
`x`:
|
|
- LongTensor(bs, slen)
|
|
<EOS> W1 W2 W3 <EOS> <PAD>
|
|
<EOS> W1 W2 W3 W4 <EOS>
|
|
`lengths`:
|
|
- LongTensor(bs) [5, 6]
|
|
`positions`:
|
|
- False, for regular "arange" positions (LM)
|
|
- True, to reset positions from the new generation (MT)
|
|
`langs`:
|
|
- must be None if the model only supports one language
|
|
- lang_id if only one language is involved (LM)
|
|
- (lang_id1, lang_id2) if two languages are involved (MT)
|
|
"""
|
|
|
|
# input batch
|
|
bs = len(src_len)
|
|
assert src_enc.size(0) == bs
|
|
|
|
# generated sentences
|
|
generated = src_len.new(max_len, bs) # upcoming output
|
|
generated.fill_(self.pad_index) # fill upcoming ouput with <PAD>
|
|
generated[0].fill_(self.eos_index) # we use <EOS> for <BOS> everywhere
|
|
|
|
# positions
|
|
positions = src_len.new(max_len).long()
|
|
positions = torch.arange(max_len, out=positions).unsqueeze(1).expand(max_len, bs)
|
|
|
|
# language IDs
|
|
langs = src_len.new(max_len).long().fill_(tgt_lang_id)
|
|
langs = langs.unsqueeze(1).expand(max_len, bs)
|
|
|
|
# current position / max lengths / length of generated sentences / unfinished sentences
|
|
cur_len = 1
|
|
gen_len = src_len.clone().fill_(1)
|
|
unfinished_sents = src_len.clone().fill_(1)
|
|
|
|
# cache compute states
|
|
cache = {'slen': 0}
|
|
|
|
while cur_len < max_len:
|
|
|
|
# compute word scores
|
|
tensor = self.forward(
|
|
'fwd',
|
|
x=generated[:cur_len],
|
|
lengths=gen_len,
|
|
positions=positions[:cur_len],
|
|
langs=langs[:cur_len],
|
|
causal=True,
|
|
src_enc=src_enc,
|
|
src_len=src_len,
|
|
cache=cache
|
|
)
|
|
assert tensor.size() == (1, bs, self.dim)
|
|
tensor = tensor.data[-1, :, :] # (bs, dim)
|
|
scores = self.pred_layer.get_scores(tensor) # (bs, n_words)
|
|
|
|
# select next words: sample or greedy
|
|
if sample_temperature is None:
|
|
next_words = torch.topk(scores, 1)[1].squeeze(1)
|
|
else:
|
|
next_words = torch.multinomial(F.softmax(scores / sample_temperature, dim=1), 1).squeeze(1)
|
|
assert next_words.size() == (bs,)
|
|
|
|
# update generations / lengths / finished sentences / current length
|
|
generated[cur_len] = next_words * unfinished_sents + self.pad_index * (1 - unfinished_sents)
|
|
gen_len.add_(unfinished_sents)
|
|
unfinished_sents.mul_(next_words.ne(self.eos_index).long())
|
|
cur_len = cur_len + 1
|
|
|
|
# stop when there is a </s> in each sentence, or if we exceed the maximul length
|
|
if unfinished_sents.max() == 0:
|
|
break
|
|
|
|
# add <EOS> to unfinished sentences
|
|
if cur_len == max_len:
|
|
generated[-1].masked_fill_(unfinished_sents.byte(), self.eos_index)
|
|
|
|
# sanity check
|
|
assert (generated == self.eos_index).sum() == 2 * bs
|
|
|
|
return generated[:cur_len], gen_len
|
|
|
|
def generate_beam(self, src_enc, src_len, tgt_lang_id, beam_size, length_penalty, early_stopping, max_len=200):
|
|
"""
|
|
Decode a sentence given initial start.
|
|
`x`:
|
|
- LongTensor(bs, slen)
|
|
<EOS> W1 W2 W3 <EOS> <PAD>
|
|
<EOS> W1 W2 W3 W4 <EOS>
|
|
`lengths`:
|
|
- LongTensor(bs) [5, 6]
|
|
`positions`:
|
|
- False, for regular "arange" positions (LM)
|
|
- True, to reset positions from the new generation (MT)
|
|
`langs`:
|
|
- must be None if the model only supports one language
|
|
- lang_id if only one language is involved (LM)
|
|
- (lang_id1, lang_id2) if two languages are involved (MT)
|
|
"""
|
|
|
|
# check inputs
|
|
assert src_enc.size(0) == src_len.size(0)
|
|
assert beam_size >= 1
|
|
|
|
# batch size / number of words
|
|
bs = len(src_len)
|
|
n_words = self.n_words
|
|
|
|
# expand to beam size the source latent representations / source lengths
|
|
src_enc = src_enc.unsqueeze(1).expand((bs, beam_size) + src_enc.shape[1:]).contiguous().view((bs * beam_size,) + src_enc.shape[1:])
|
|
src_len = src_len.unsqueeze(1).expand(bs, beam_size).contiguous().view(-1)
|
|
|
|
# generated sentences (batch with beam current hypotheses)
|
|
generated = src_len.new(max_len, bs * beam_size) # upcoming output
|
|
generated.fill_(self.pad_index) # fill upcoming ouput with <PAD>
|
|
generated[0].fill_(self.eos_index) # we use <EOS> for <BOS> everywhere
|
|
|
|
# generated hypotheses
|
|
generated_hyps = [BeamHypotheses(beam_size, max_len, length_penalty, early_stopping) for _ in range(bs)]
|
|
|
|
# positions
|
|
positions = src_len.new(max_len).long()
|
|
positions = torch.arange(max_len, out=positions).unsqueeze(1).expand_as(generated)
|
|
|
|
# language IDs
|
|
langs = positions.clone().fill_(tgt_lang_id)
|
|
|
|
# scores for each sentence in the beam
|
|
beam_scores = src_enc.new(bs, beam_size).fill_(0)
|
|
beam_scores[:, 1:] = -1e9
|
|
beam_scores = beam_scores.view(-1)
|
|
|
|
# current position
|
|
cur_len = 1
|
|
|
|
# cache compute states
|
|
cache = {'slen': 0}
|
|
|
|
# done sentences
|
|
done = [False for _ in range(bs)]
|
|
|
|
while cur_len < max_len:
|
|
|
|
# compute word scores
|
|
tensor = self.forward(
|
|
'fwd',
|
|
x=generated[:cur_len],
|
|
lengths=src_len.new(bs * beam_size).fill_(cur_len),
|
|
positions=positions[:cur_len],
|
|
langs=langs[:cur_len],
|
|
causal=True,
|
|
src_enc=src_enc,
|
|
src_len=src_len,
|
|
cache=cache
|
|
)
|
|
assert tensor.size() == (1, bs * beam_size, self.dim)
|
|
tensor = tensor.data[-1, :, :] # (bs * beam_size, dim)
|
|
scores = self.pred_layer.get_scores(tensor) # (bs * beam_size, n_words)
|
|
scores = F.log_softmax(scores, dim=-1) # (bs * beam_size, n_words)
|
|
assert scores.size() == (bs * beam_size, n_words)
|
|
|
|
# select next words with scores
|
|
_scores = scores + beam_scores[:, None].expand_as(scores) # (bs * beam_size, n_words)
|
|
_scores = _scores.view(bs, beam_size * n_words) # (bs, beam_size * n_words)
|
|
|
|
next_scores, next_words = torch.topk(_scores, 2 * beam_size, dim=1, largest=True, sorted=True)
|
|
assert next_scores.size() == next_words.size() == (bs, 2 * beam_size)
|
|
|
|
# next batch beam content
|
|
# list of (bs * beam_size) tuple(next hypothesis score, next word, current position in the batch)
|
|
next_batch_beam = []
|
|
|
|
# for each sentence
|
|
for sent_id in range(bs):
|
|
|
|
# if we are done with this sentence
|
|
done[sent_id] = done[sent_id] or generated_hyps[sent_id].is_done(next_scores[sent_id].max().item())
|
|
if done[sent_id]:
|
|
next_batch_beam.extend([(0, self.pad_index, 0)] * beam_size) # pad the batch
|
|
continue
|
|
|
|
# next sentence beam content
|
|
next_sent_beam = []
|
|
|
|
# next words for this sentence
|
|
for idx, value in zip(next_words[sent_id], next_scores[sent_id]):
|
|
|
|
# get beam and word IDs
|
|
beam_id = idx // n_words
|
|
word_id = idx % n_words
|
|
|
|
# end of sentence, or next word
|
|
if word_id == self.eos_index or cur_len + 1 == max_len:
|
|
generated_hyps[sent_id].add(generated[:cur_len, sent_id * beam_size + beam_id].clone(), value.item())
|
|
else:
|
|
next_sent_beam.append((value, word_id, sent_id * beam_size + beam_id))
|
|
|
|
# the beam for next step is full
|
|
if len(next_sent_beam) == beam_size:
|
|
break
|
|
|
|
# update next beam content
|
|
assert len(next_sent_beam) == 0 if cur_len + 1 == max_len else beam_size
|
|
if len(next_sent_beam) == 0:
|
|
next_sent_beam = [(0, self.pad_index, 0)] * beam_size # pad the batch
|
|
next_batch_beam.extend(next_sent_beam)
|
|
assert len(next_batch_beam) == beam_size * (sent_id + 1)
|
|
|
|
# sanity check / prepare next batch
|
|
assert len(next_batch_beam) == bs * beam_size
|
|
beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
|
|
beam_words = generated.new([x[1] for x in next_batch_beam])
|
|
beam_idx = src_len.new([x[2] for x in next_batch_beam])
|
|
|
|
# re-order batch and internal states
|
|
generated = generated[:, beam_idx]
|
|
generated[cur_len] = beam_words
|
|
for k in cache.keys():
|
|
if k != 'slen':
|
|
cache[k] = (cache[k][0][beam_idx], cache[k][1][beam_idx])
|
|
|
|
# update current length
|
|
cur_len = cur_len + 1
|
|
|
|
# stop when we are done with each sentence
|
|
if all(done):
|
|
break
|
|
|
|
# visualize hypotheses
|
|
# print([len(x) for x in generated_hyps], cur_len)
|
|
# globals().update( locals() );
|
|
# !import code; code.interact(local=vars())
|
|
# for ii in range(bs):
|
|
# for ss, ww in sorted(generated_hyps[ii].hyp, key=lambda x: x[0], reverse=True):
|
|
# print("%.3f " % ss + " ".join(self.dico[x] for x in ww.tolist()))
|
|
# print("")
|
|
|
|
# select the best hypotheses
|
|
tgt_len = src_len.new(bs)
|
|
best = []
|
|
|
|
for i, hypotheses in enumerate(generated_hyps):
|
|
best_hyp = max(hypotheses.hyp, key=lambda x: x[0])[1]
|
|
tgt_len[i] = len(best_hyp) + 1 # +1 for the <EOS> symbol
|
|
best.append(best_hyp)
|
|
|
|
# generate target batch
|
|
decoded = src_len.new(tgt_len.max().item(), bs).fill_(self.pad_index)
|
|
for i, hypo in enumerate(best):
|
|
decoded[:tgt_len[i] - 1, i] = hypo
|
|
decoded[tgt_len[i] - 1, i] = self.eos_index
|
|
|
|
# sanity check
|
|
assert (decoded == self.eos_index).sum() == 2 * bs
|
|
|
|
return decoded, tgt_len
|
|
|
|
|
|
class XLMModel(XLMPreTrainedModel):
|
|
def __init__(self, config, output_attentions=False, output_hidden_states=False):
|
|
super(XLMModel, self).__init__(config)
|
|
self.output_attentions = output_attentions
|
|
self.output_hidden_states = output_hidden_states
|
|
|
|
self.mem_len = config.mem_len
|
|
self.reuse_len = config.reuse_len
|
|
self.d_model = config.d_model
|
|
self.same_length = config.same_length
|
|
self.attn_type = config.attn_type
|
|
self.bi_data = config.bi_data
|
|
self.clamp_len = config.clamp_len
|
|
|
|
self.word_embedding = nn.Embedding(config.n_token, config.d_model)
|
|
self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
|
|
layer = XLMLayer(config, output_attentions=output_attentions,
|
|
keep_multihead_output=keep_multihead_output)
|
|
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layer)])
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def prune_heads(self, heads_to_prune):
|
|
""" Prunes heads of the model.
|
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.layer[layer].attention.prune_heads(heads)
|
|
|
|
def get_multihead_outputs(self):
|
|
""" Gather all multi-head outputs.
|
|
Return: list (layers) of multihead module outputs with gradients
|
|
"""
|
|
return [layer.attention.self.multihead_output for layer in self.layer]
|
|
|
|
def create_mask(self, qlen, mlen):
|
|
""" create causal attention mask.
|
|
float mask where 1.0 indicate masked, 0.0 indicated not-masked.
|
|
same_length=False: same_length=True:
|
|
<mlen > < qlen > <mlen > < qlen >
|
|
^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
|
|
[0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
|
|
qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
|
|
[0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
|
|
v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]
|
|
"""
|
|
attn_mask = torch.ones([qlen, qlen])
|
|
mask_up = torch.triu(attn_mask, diagonal=1)
|
|
attn_mask_pad = torch.zeros([qlen, mlen])
|
|
ret = torch.cat([attn_mask_pad, mask_up], dim=1)
|
|
if self.same_length:
|
|
mask_lo = torch.tril(attn_mask, diagonal=-1)
|
|
ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)
|
|
|
|
ret = ret.to(next(self.parameters()))
|
|
return ret
|
|
|
|
def cache_mem(self, curr_out, prev_mem):
|
|
"""cache hidden states into memory."""
|
|
if self.mem_len is None or self.mem_len == 0:
|
|
return None
|
|
else:
|
|
if self.reuse_len is not None and self.reuse_len > 0:
|
|
curr_out = curr_out[:self.reuse_len]
|
|
|
|
if prev_mem is None:
|
|
new_mem = curr_out[-self.mem_len:]
|
|
else:
|
|
new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]
|
|
|
|
return new_mem.detach()
|
|
|
|
@staticmethod
|
|
def positional_embedding(pos_seq, inv_freq, bsz=None):
|
|
sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
|
|
pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
|
|
pos_emb = pos_emb[:, None, :]
|
|
|
|
if bsz is not None:
|
|
pos_emb = pos_emb.expand(-1, bsz, -1)
|
|
|
|
return pos_emb
|
|
|
|
def relative_positional_encoding(self, qlen, klen, bsz=None):
|
|
"""create relative positional encoding."""
|
|
freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
|
|
inv_freq = 1 / (10000 ** (freq_seq / self.d_model))
|
|
|
|
if self.attn_type == 'bi':
|
|
# beg, end = klen - 1, -qlen
|
|
beg, end = klen, -qlen
|
|
elif self.attn_type == 'uni':
|
|
# beg, end = klen - 1, -1
|
|
beg, end = klen, -1
|
|
else:
|
|
raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))
|
|
|
|
if self.bi_data:
|
|
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
|
|
bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
|
|
|
|
if self.clamp_len > 0:
|
|
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
|
bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
|
|
|
if bsz is not None:
|
|
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
|
|
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
|
|
else:
|
|
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
|
|
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
|
|
|
|
pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
|
|
else:
|
|
fwd_pos_seq = torch.arange(beg, end, -1.0)
|
|
if self.clamp_len > 0:
|
|
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
|
pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
|
|
|
|
pos_emb = pos_emb.to(next(self.parameters()))
|
|
return pos_emb
|
|
|
|
def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
|
|
mems=None, perm_mask=None, target_mapping=None, inp_q=None, head_mask=None):
|
|
"""
|
|
Args:
|
|
inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
|
|
token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
|
|
input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
|
|
0 for real tokens and 1 for padding.
|
|
attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
|
|
but with 1 for real tokens and 0 for padding.
|
|
Added for easy compatibility with the XLM model (which uses this negative masking).
|
|
You can only uses one among `input_mask` and `attention_mask`
|
|
mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
|
|
from previous batches. The length of the list equals n_layer.
|
|
If None, no memory is used.
|
|
perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
|
|
If perm_mask[k, i, j] = 0, i attend to j in batch k;
|
|
if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
|
|
If None, each position attends to all the others.
|
|
target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
|
|
If target_mapping[k, i, j] = 1, the i-th predict in batch k is
|
|
on the j-th token.
|
|
Only used during pretraining for partial prediction.
|
|
Set to None during finetuning.
|
|
inp_q: [optional] float32 Tensor in shape [bsz, len].
|
|
1 for tokens with losses and 0 for tokens without losses.
|
|
Only used during pretraining for two-stream attention.
|
|
Set to None during finetuning.
|
|
|
|
mem_len: int, the number of tokens to cache.
|
|
reuse_len: int, the number of tokens in the currect batch to be cached
|
|
and reused in the future.
|
|
bi_data: bool, whether to use bidirectional input pipeline.
|
|
Usually set to True during pretraining and False during finetuning.
|
|
clamp_len: int, clamp all relative distances larger than clamp_len.
|
|
-1 means no clamping.
|
|
same_length: bool, whether to use the same attention length for each token.
|
|
summary_type: str, "last", "first", "mean", or "attn". The method
|
|
to pool the input to get a vector representation.
|
|
"""
|
|
# the original code for XLM uses shapes [len, bsz] with the batch dimension at the end
|
|
# but we want a unified interface in the library with the batch size on the first dimension
|
|
# so we move here the first dimension (batch) to the end
|
|
inp_k = inp_k.transpose(0, 1).contiguous()
|
|
token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
|
|
input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
|
|
attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
|
|
perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
|
|
target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
|
|
inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None
|
|
|
|
qlen, bsz = inp_k.shape[0], inp_k.shape[1]
|
|
mlen = mems[0].shape[0] if mems is not None else 0
|
|
klen = mlen + qlen
|
|
|
|
dtype_float = next(self.parameters()).dtype
|
|
device = next(self.parameters()).device
|
|
|
|
##### Attention mask
|
|
# causal attention mask
|
|
if self.attn_type == 'uni':
|
|
attn_mask = self.create_mask(qlen, mlen)
|
|
attn_mask = attn_mask[:, :, None, None]
|
|
elif self.attn_type == 'bi':
|
|
attn_mask = None
|
|
else:
|
|
raise ValueError('Unsupported attention type: {}'.format(self.attn_type))
|
|
|
|
# data mask: input mask & perm mask
|
|
assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
|
|
"or attention_mask (uses 0 for padding, added for compatbility with XLM). Please choose one."
|
|
if input_mask is None and attention_mask is not None:
|
|
input_mask = 1.0 - attention_mask
|
|
if input_mask is not None and perm_mask is not None:
|
|
data_mask = input_mask[None] + perm_mask
|
|
elif input_mask is not None and perm_mask is None:
|
|
data_mask = input_mask[None]
|
|
elif input_mask is None and perm_mask is not None:
|
|
data_mask = perm_mask
|
|
else:
|
|
data_mask = None
|
|
|
|
if data_mask is not None:
|
|
# all mems can be attended to
|
|
mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
|
|
data_mask = torch.cat([mems_mask, data_mask], dim=1)
|
|
if attn_mask is None:
|
|
attn_mask = data_mask[:, :, :, None]
|
|
else:
|
|
attn_mask += data_mask[:, :, :, None]
|
|
|
|
if attn_mask is not None:
|
|
attn_mask = (attn_mask > 0).to(dtype_float)
|
|
|
|
if attn_mask is not None:
|
|
non_tgt_mask = -torch.eye(qlen).to(attn_mask)
|
|
non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
|
|
non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
|
|
else:
|
|
non_tgt_mask = None
|
|
|
|
##### Word embeddings and prepare h & g hidden states
|
|
word_emb_k = self.word_embedding(inp_k)
|
|
output_h = self.dropout(word_emb_k)
|
|
if inp_q is not None:
|
|
if target_mapping is not None:
|
|
word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
|
|
else:
|
|
inp_q_ext = inp_q[:, :, None]
|
|
word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
|
|
output_g = self.dropout(word_emb_q)
|
|
else:
|
|
output_g = None
|
|
|
|
##### Segment embedding
|
|
if token_type_ids is not None:
|
|
# Convert `token_type_ids` to one-hot `seg_mat`
|
|
mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
|
|
cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
|
|
|
|
# `1` indicates not in the same segment [qlen x klen x bsz]
|
|
seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
|
|
seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
|
|
else:
|
|
seg_mat = None
|
|
|
|
##### Positional encoding
|
|
pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
|
|
pos_emb = self.dropout(pos_emb)
|
|
|
|
##### Head mask if needed (for bertology/pruning)
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# input head_mask has shape [num_heads] or [n_layer x num_heads]
|
|
# and head_mask is converted to shape [n_layer x batch x num_heads x seq_length x seq_length]
|
|
if head_mask is not None:
|
|
if head_mask.dim() == 1:
|
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
|
head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
|
|
elif head_mask.dim() == 2:
|
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
|
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
|
else:
|
|
head_mask = [None] * self.config.n_layer
|
|
|
|
new_mems = []
|
|
if mems is None:
|
|
mems = [None] * len(self.layer)
|
|
|
|
hidden_states = []
|
|
attentions = []
|
|
for i, layer_module in enumerate(self.layer):
|
|
# cache new mems
|
|
new_mems.append(self.cache_mem(output_h, mems[i]))
|
|
# Save hidden_states
|
|
if output_g is None:
|
|
hidden_states.append(output_h)
|
|
else:
|
|
hidden_states.append((output_h, output_g))
|
|
|
|
output_h, output_g = layer_module(output_h, output_g,
|
|
attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
|
|
r=pos_emb, seg_mat=seg_mat,
|
|
mems=mems[i], target_mapping=target_mapping,
|
|
head_mask=head_mask)
|
|
# Save last hidden_state
|
|
if output_g is None:
|
|
hidden_states.append(output_h)
|
|
else:
|
|
hidden_states.append((output_h, output_g))
|
|
|
|
# Select the right output and add dropout
|
|
output = self.dropout(output_g if output_g is not None else output_h)
|
|
|
|
# We transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
|
|
output = output.permute(1, 0, 2).contiguous()
|
|
if output_g is None:
|
|
hidden_states = [hs.permute(1, 0, 2).contiguous() for hs in hidden_states]
|
|
else:
|
|
hidden_states = [h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs]
|
|
|
|
# Build the list of outputs
|
|
outputs = [output, new_mems]
|
|
if self.output_attentions:
|
|
outputs.append(attentions)
|
|
if self.output_hidden_states:
|
|
outputs.append(hidden_states)
|
|
|
|
return outputs
|
|
|
|
|
|
class XLMPredLayer(nn.Module):
|
|
"""
|
|
Prediction layer (cross_entropy or adaptive_softmax).
|
|
"""
|
|
def __init__(self, params):
|
|
super().__init__()
|
|
self.asm = params.asm
|
|
self.n_words = params.n_words
|
|
self.pad_index = params.pad_index
|
|
dim = params.emb_dim
|
|
|
|
if params.asm is False:
|
|
self.proj = Linear(dim, params.n_words, bias=True)
|
|
else:
|
|
self.proj = nn.AdaptiveLogSoftmaxWithLoss(
|
|
in_features=dim,
|
|
n_classes=params.n_words,
|
|
cutoffs=params.asm_cutoffs,
|
|
div_value=params.asm_div_value,
|
|
head_bias=True, # default is False
|
|
)
|
|
|
|
def forward(self, x, y, get_scores=False):
|
|
"""
|
|
Compute the loss, and optionally the scores.
|
|
"""
|
|
assert (y == self.pad_index).sum().item() == 0
|
|
|
|
if self.asm is False:
|
|
scores = self.proj(x).view(-1, self.n_words)
|
|
loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
|
|
else:
|
|
_, loss = self.proj(x, y)
|
|
scores = self.proj.log_prob(x) if get_scores else None
|
|
|
|
return scores, loss
|
|
|
|
def get_scores(self, x):
|
|
"""
|
|
Compute scores.
|
|
"""
|
|
assert x.dim() == 2
|
|
return self.proj.log_prob(x) if self.asm else self.proj(x)
|
|
|
|
|
|
class XLMLMHeadModel(XLMPreTrainedModel):
|
|
"""XLM model ("XLM: Generalized Autoregressive Pretraining for Language Understanding").
|
|
|
|
Params:
|
|
`config`: a XLMConfig class instance with the configuration to build a new model
|
|
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
|
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
|
This can be used to compute head importance metrics. Default: False
|
|
|
|
Inputs:
|
|
inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
|
|
token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
|
|
attention_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
|
|
0 for real tokens and 1 for padding.
|
|
mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
|
|
from previous batches. The length of the list equals n_layer.
|
|
If None, no memory is used.
|
|
perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
|
|
If perm_mask[k, i, j] = 0, i attend to j in batch k;
|
|
if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
|
|
If None, each position attends to all the others.
|
|
target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
|
|
If target_mapping[k, i, j] = 1, the i-th predict in batch k is
|
|
on the j-th token.
|
|
Only used during pretraining for partial prediction.
|
|
Set to None during finetuning.
|
|
inp_q: [optional] float32 Tensor in shape [bsz, len].
|
|
1 for tokens with losses and 0 for tokens without losses.
|
|
Only used during pretraining for two-stream attention.
|
|
Set to None during finetuning.
|
|
|
|
|
|
Outputs: Tuple of (encoded_layers, pooled_output)
|
|
`encoded_layers`: controled by `output_all_encoded_layers` argument:
|
|
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
|
of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
|
|
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
|
|
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
|
to the last attention block of shape [batch_size, sequence_length, d_model],
|
|
`pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
|
|
classifier pretrained on top of the hidden state associated to the first character of the
|
|
input (`CLS`) to train on the Next-Sentence task (see XLM's paper).
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into WordPiece token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
|
|
|
config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, d_model=768,
|
|
n_layer=12, num_attention_heads=12, intermediate_size=3072)
|
|
|
|
model = modeling.XLMModel(config=config)
|
|
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
|
```
|
|
"""
|
|
def __init__(self, config, output_attentions=False, output_hidden_states=False):
|
|
super(XLMLMHeadModel, self).__init__(config)
|
|
self.output_attentions = output_attentions
|
|
self.output_hidden_states = output_hidden_states
|
|
|
|
self.attn_type = config.attn_type
|
|
self.same_length = config.same_length
|
|
|
|
self.transformer = XLMModel(config, output_attentions=output_attentions, output_hidden_states=output_hidden_states)
|
|
self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
|
|
|
|
# Tie weights
|
|
|
|
self.apply(self.init_weights)
|
|
self.tie_weights()
|
|
|
|
def tie_weights(self):
|
|
""" Make sure we are sharing the embeddings
|
|
"""
|
|
self.lm_loss.weight = self.transformer.word_embedding.weight
|
|
|
|
def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
|
|
mems=None, perm_mask=None, target_mapping=None, inp_q=None,
|
|
labels=None, head_mask=None):
|
|
"""
|
|
Args:
|
|
inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
|
|
token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
|
|
input_mask: float32 Tensor in shape [bsz, len], the input mask.
|
|
0 for real tokens and 1 for padding.
|
|
mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
|
|
from previous batches. The length of the list equals n_layer.
|
|
If None, no memory is used.
|
|
perm_mask: float32 Tensor in shape [bsz, len, len].
|
|
If perm_mask[k, i, j] = 0, i attend to j in batch k;
|
|
if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
|
|
If None, each position attends to all the others.
|
|
target_mapping: float32 Tensor in shape [bsz, num_predict, len].
|
|
If target_mapping[k, i, j] = 1, the i-th predict in batch k is
|
|
on the j-th token.
|
|
Only used during pretraining for partial prediction.
|
|
Set to None during finetuning.
|
|
inp_q: float32 Tensor in shape [bsz, len].
|
|
1 for tokens with losses and 0 for tokens without losses.
|
|
Only used during pretraining for two-stream attention.
|
|
Set to None during finetuning.
|
|
|
|
summary_type: str, "last", "first", "mean", or "attn". The method
|
|
to pool the input to get a vector representation.
|
|
"""
|
|
transformer_outputs = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
|
|
mems, perm_mask, target_mapping, inp_q, head_mask)
|
|
|
|
output = transformer_outputs[0]
|
|
logits = self.lm_loss(output)
|
|
|
|
outputs = transformer_outputs[1:] # Keep new_mems and attention/hidden states if they are here
|
|
|
|
if labels is not None:
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss(ignore_index=-1)
|
|
loss = loss_fct(logits.view(-1, logits.size(-1)),
|
|
labels.view(-1))
|
|
outputs = [loss] + outputs
|
|
|
|
outputs = [logits] + outputs
|
|
|
|
return outputs
|
|
|
|
|
|
class XLMSequenceSummary(nn.Module):
|
|
def __init__(self, config, summary_type="last", use_proj=True):
|
|
super(XLMSequenceSummary, self).__init__()
|
|
self.summary_type = summary_type
|
|
if use_proj:
|
|
self.summary = nn.Linear(config.d_model, config.d_model)
|
|
else:
|
|
self.summary = None
|
|
if summary_type == 'attn':
|
|
# We should use a standard multi-head attention module with absolute positional embedding for that.
|
|
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
|
|
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
|
|
raise NotImplementedError
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
self.activation = nn.Tanh()
|
|
|
|
def forward(self, hidden_states):
|
|
""" hidden_states: float Tensor in shape [bsz, seq_len, d_model], the hidden-states of the last layer."""
|
|
if self.summary_type == 'last':
|
|
output = hidden_states[:, -1]
|
|
elif self.summary_type == 'first':
|
|
output = hidden_states[:, 0]
|
|
elif self.summary_type == 'mean':
|
|
output = hidden_states.mean(dim=1)
|
|
elif summary_type == 'attn':
|
|
raise NotImplementedError
|
|
|
|
output = self.summary(output)
|
|
output = self.activation(output)
|
|
output = self.dropout(output)
|
|
return output
|
|
|
|
|
|
class XLMForSequenceClassification(XLMPreTrainedModel):
|
|
"""XLM model ("XLM: Generalized Autoregressive Pretraining for Language Understanding").
|
|
|
|
Params:
|
|
`config`: a XLMConfig class instance with the configuration to build a new model
|
|
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
|
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
|
This can be used to compute head importance metrics. Default: False
|
|
`summary_type`: str, "last", "first", "mean", or "attn". The method
|
|
to pool the input to get a vector representation. Default: last
|
|
|
|
Inputs:
|
|
inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
|
|
token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
|
|
input_mask: float32 Tensor in shape [bsz, len], the input mask.
|
|
0 for real tokens and 1 for padding.
|
|
attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
|
|
but with 1 for real tokens and 0 for padding.
|
|
Added for easy compatibility with the XLM model (which uses this negative masking).
|
|
You can only uses one among `input_mask` and `attention_mask`
|
|
mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
|
|
from previous batches. The length of the list equals n_layer.
|
|
If None, no memory is used.
|
|
perm_mask: float32 Tensor in shape [bsz, len, len].
|
|
If perm_mask[k, i, j] = 0, i attend to j in batch k;
|
|
if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
|
|
If None, each position attends to all the others.
|
|
target_mapping: float32 Tensor in shape [bsz, num_predict, len].
|
|
If target_mapping[k, i, j] = 1, the i-th predict in batch k is
|
|
on the j-th token.
|
|
Only used during pretraining for partial prediction.
|
|
Set to None during finetuning.
|
|
inp_q: float32 Tensor in shape [bsz, len].
|
|
1 for tokens with losses and 0 for tokens without losses.
|
|
Only used during pretraining for two-stream attention.
|
|
Set to None during finetuning.
|
|
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
|
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
|
|
|
|
|
Outputs: Tuple of (logits or loss, mems)
|
|
`logits or loss`:
|
|
if labels is None:
|
|
Token logits with shape [batch_size, sequence_length]
|
|
else:
|
|
CrossEntropy loss with the targets
|
|
`new_mems`: list (num layers) of updated mem states at the entry of each layer
|
|
each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
|
|
Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into WordPiece token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
|
|
|
config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, d_model=768,
|
|
n_layer=12, num_attention_heads=12, intermediate_size=3072)
|
|
|
|
model = modeling.XLMModel(config=config)
|
|
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
|
```
|
|
"""
|
|
def __init__(self, config, summary_type="last", use_proj=True, num_labels=2,
|
|
output_attentions=False, output_hidden_states=False):
|
|
super(XLMForSequenceClassification, self).__init__(config)
|
|
self.output_attentions = output_attentions
|
|
self.output_hidden_states = output_hidden_states
|
|
|
|
self.summary_type = summary_type
|
|
self.num_labels = num_labels
|
|
|
|
self.transformer = XLMModel(config, output_attentions=output_attentions, output_hidden_states=output_hidden_states)
|
|
|
|
self.sequence_summary = XLMSequenceSummary(config, summary_type=summary_type, use_proj=use_proj)
|
|
self.logits_proj = nn.Linear(config.d_model, num_labels)
|
|
self.apply(self.init_weights)
|
|
|
|
def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
|
|
mems=None, perm_mask=None, target_mapping=None, inp_q=None,
|
|
labels=None, head_mask=None):
|
|
"""
|
|
Args:
|
|
inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
|
|
token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
|
|
input_mask: float32 Tensor in shape [bsz, len], the input mask.
|
|
0 for real tokens and 1 for padding.
|
|
attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
|
|
but with 1 for real tokens and 0 for padding.
|
|
Added for easy compatibility with the XLM model (which uses this negative masking).
|
|
You can only uses one among `input_mask` and `attention_mask`
|
|
mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
|
|
from previous batches. The length of the list equals n_layer.
|
|
If None, no memory is used.
|
|
perm_mask: float32 Tensor in shape [bsz, len, len].
|
|
If perm_mask[k, i, j] = 0, i attend to j in batch k;
|
|
if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
|
|
If None, each position attends to all the others.
|
|
target_mapping: float32 Tensor in shape [bsz, num_predict, len].
|
|
If target_mapping[k, i, j] = 1, the i-th predict in batch k is
|
|
on the j-th token.
|
|
Only used during pretraining for partial prediction.
|
|
Set to None during finetuning.
|
|
inp_q: float32 Tensor in shape [bsz, len].
|
|
1 for tokens with losses and 0 for tokens without losses.
|
|
Only used during pretraining for two-stream attention.
|
|
Set to None during finetuning.
|
|
"""
|
|
transformer_outputs = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
|
|
mems, perm_mask, target_mapping, inp_q, head_mask)
|
|
|
|
output = transformer_outputs[0]
|
|
output = self.sequence_summary(output)
|
|
logits = self.logits_proj(output)
|
|
|
|
outputs = transformer_outputs[1:] # Keep new_mems and attention/hidden states if they are here
|
|
|
|
if labels is not None:
|
|
if self.num_labels == 1:
|
|
# We are doing regression
|
|
loss_fct = MSELoss()
|
|
loss = loss_fct(logits.view(-1), labels.view(-1))
|
|
else:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
outputs = [loss] + outputs
|
|
|
|
outputs = [logits] + outputs
|
|
|
|
return outputs
|
|
|
|
|
|
class XLMForQuestionAnswering(XLMPreTrainedModel):
|
|
"""XLM model for Question Answering (span extraction).
|
|
This module is composed of the XLM model with a linear layer on top of
|
|
the sequence output that computes start_logits and end_logits
|
|
|
|
Params:
|
|
`config`: a XLMConfig class instance with the configuration to build a new model
|
|
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
|
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
|
This can be used to compute head importance metrics. Default: False
|
|
|
|
Inputs:
|
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
|
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
|
`run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
|
|
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
|
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
|
a `sentence B` token (see XLM paper for more details).
|
|
`attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
|
|
but with 1 for real tokens and 0 for padding.
|
|
Added for easy compatibility with the XLM model (which uses this negative masking).
|
|
You can only uses one among `input_mask` and `attention_mask`
|
|
`input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
|
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
|
input sequence length in the current batch. It's the mask that we typically use for attention when
|
|
a batch has varying length sentences.
|
|
`start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
|
|
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
|
|
into account for computing the loss.
|
|
`end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
|
|
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
|
|
into account for computing the loss.
|
|
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
|
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
|
|
|
Outputs:
|
|
if `start_positions` and `end_positions` are not `None`:
|
|
Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
|
|
if `start_positions` or `end_positions` is `None`:
|
|
Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
|
|
position tokens of shape [batch_size, sequence_length].
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into WordPiece token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
|
|
|
config = XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
|
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
|
|
|
model = XLMForQuestionAnswering(config)
|
|
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
|
|
```
|
|
"""
|
|
def __init__(self, config, output_attentions=False, output_hidden_states=False):
|
|
super(XLMForQuestionAnswering, self).__init__(config)
|
|
self.output_attentions = output_attentions
|
|
self.output_hidden_states = output_hidden_states
|
|
|
|
self.transformer = XLMModel(config, output_attentions=output_attentions, output_hidden_states=output_hidden_states)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
|
self.apply(self.init_weights)
|
|
|
|
def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
|
|
mems=None, perm_mask=None, target_mapping=None, inp_q=None,
|
|
start_positions=None, end_positions=None, head_mask=None):
|
|
|
|
transformer_outputs = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
|
|
mems, perm_mask, target_mapping, inp_q, head_mask)
|
|
|
|
output = transformer_outputs[0]
|
|
logits = self.qa_outputs(output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1)
|
|
end_logits = end_logits.squeeze(-1)
|
|
|
|
outputs = transformer_outputs[1:] # Keep new_mems and attention/hidden states if they are here
|
|
|
|
if start_positions is not None and end_positions is not None:
|
|
# If we are on multi-GPU, split add a dimension
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1)
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
ignored_index = start_logits.size(1)
|
|
start_positions.clamp_(0, ignored_index)
|
|
end_positions.clamp_(0, ignored_index)
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
outputs = [total_loss] + outputs
|
|
|
|
outputs = [start_logits, end_logits] + outputs
|
|
|
|
return outputs
|