transformers/tests/peft_integration/test_peft_integration.py
Matt 2aff938992
Fix pipeline+peft interaction (#36480)
* Fix pipeline-peft interaction

* once again you have committed a debug breakpoint

* Remove extra testing line

* Add a test to check adapter loading

* Correct adapter path

* make fixup

* Remove unnecessary check

* Make check a little more stringent
2025-03-03 18:01:43 +00:00

818 lines
37 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
import tempfile
import unittest
from datasets import Dataset, DatasetDict
from huggingface_hub import hf_hub_download
from packaging import version
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
OPTForCausalLM,
Trainer,
TrainingArguments,
logging,
)
from transformers.testing_utils import (
CaptureLogger,
require_bitsandbytes,
require_peft,
require_torch,
require_torch_accelerator,
require_torch_gpu,
slow,
torch_device,
)
from transformers.utils import is_torch_available
if is_torch_available():
import torch
@require_peft
@require_torch
class PeftTesterMixin:
peft_test_model_ids = ("peft-internal-testing/tiny-OPTForCausalLM-lora",)
transformers_test_model_ids = ("hf-internal-testing/tiny-random-OPTForCausalLM",)
transformers_test_model_classes = (AutoModelForCausalLM, OPTForCausalLM)
# TODO: run it with CI after PEFT release.
@slow
class PeftIntegrationTester(unittest.TestCase, PeftTesterMixin):
"""
A testing suite that makes sure that the PeftModel class is correctly integrated into the transformers library.
"""
def _check_lora_correctly_converted(self, model):
"""
Utility method to check if the model has correctly adapters injected on it.
"""
from peft.tuners.tuners_utils import BaseTunerLayer
is_peft_loaded = False
for _, m in model.named_modules():
if isinstance(m, BaseTunerLayer):
is_peft_loaded = True
break
return is_peft_loaded
def test_peft_from_pretrained(self):
"""
Simple test that tests the basic usage of PEFT model through `from_pretrained`.
This checks if we pass a remote folder that contains an adapter config and adapter weights, it
should correctly load a model that has adapters injected on it.
"""
logger = logging.get_logger("transformers.integrations.peft")
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
with CaptureLogger(logger) as cl:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
# ensure that under normal circumstances, there are no warnings about keys
self.assertNotIn("unexpected keys", cl.out)
self.assertNotIn("missing keys", cl.out)
self.assertTrue(self._check_lora_correctly_converted(peft_model))
self.assertTrue(peft_model._hf_peft_config_loaded)
# dummy generation
_ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))
def test_peft_state_dict(self):
"""
Simple test that checks if the returned state dict of `get_adapter_state_dict()` method contains
the expected keys.
"""
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
state_dict = peft_model.get_adapter_state_dict()
for key in state_dict.keys():
self.assertTrue("lora" in key)
def test_peft_save_pretrained(self):
"""
Test that checks various combinations of `save_pretrained` with a model that has adapters loaded
on it. This checks if the saved model contains the expected files (adapter weights and adapter config).
"""
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
peft_model.save_pretrained(tmpdirname)
self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
self.assertTrue("config.json" not in os.listdir(tmpdirname))
self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))
peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
self.assertTrue(self._check_lora_correctly_converted(peft_model))
peft_model.save_pretrained(tmpdirname, safe_serialization=False)
self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
self.assertTrue(self._check_lora_correctly_converted(peft_model))
def test_peft_enable_disable_adapters(self):
"""
A test that checks if `enable_adapters` and `disable_adapters` methods work as expected.
"""
from peft import LoraConfig
dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig(init_lora_weights=False)
peft_model.add_adapter(peft_config)
peft_logits = peft_model(dummy_input).logits
peft_model.disable_adapters()
peft_logits_disabled = peft_model(dummy_input).logits
peft_model.enable_adapters()
peft_logits_enabled = peft_model(dummy_input).logits
torch.testing.assert_close(peft_logits, peft_logits_enabled, rtol=1e-12, atol=1e-12)
self.assertFalse(torch.allclose(peft_logits_enabled, peft_logits_disabled, atol=1e-12, rtol=1e-12))
def test_peft_add_adapter(self):
"""
Simple test that tests if `add_adapter` works as expected
"""
from peft import LoraConfig
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig(init_lora_weights=False)
model.add_adapter(peft_config)
self.assertTrue(self._check_lora_correctly_converted(model))
# dummy generation
_ = model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))
def test_peft_add_adapter_from_pretrained(self):
"""
Simple test that tests if `add_adapter` works as expected
"""
from peft import LoraConfig
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig(init_lora_weights=False)
model.add_adapter(peft_config)
self.assertTrue(self._check_lora_correctly_converted(model))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_from_pretrained = transformers_class.from_pretrained(tmpdirname).to(torch_device)
self.assertTrue(self._check_lora_correctly_converted(model_from_pretrained))
def test_peft_add_adapter_modules_to_save(self):
"""
Simple test that tests if `add_adapter` works as expected when training with
modules to save.
"""
from peft import LoraConfig
from peft.utils import ModulesToSaveWrapper
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig(init_lora_weights=False, modules_to_save=["lm_head"])
model.add_adapter(peft_config)
self._check_lora_correctly_converted(model)
_has_modules_to_save_wrapper = False
for name, module in model.named_modules():
if isinstance(module, ModulesToSaveWrapper):
_has_modules_to_save_wrapper = True
self.assertTrue(module.modules_to_save.default.weight.requires_grad)
self.assertTrue("lm_head" in name)
break
self.assertTrue(_has_modules_to_save_wrapper)
state_dict = model.get_adapter_state_dict()
self.assertTrue("lm_head.weight" in state_dict.keys())
logits = model(dummy_input).logits
loss = logits.mean()
loss.backward()
for _, param in model.named_parameters():
if param.requires_grad:
self.assertTrue(param.grad is not None)
def test_peft_add_adapter_training_gradient_checkpointing(self):
"""
Simple test that tests if `add_adapter` works as expected when training with
gradient checkpointing.
"""
from peft import LoraConfig
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig(init_lora_weights=False)
model.add_adapter(peft_config)
self.assertTrue(self._check_lora_correctly_converted(model))
# When attaching adapters the input embeddings will stay frozen, this will
# lead to the output embedding having requires_grad=False.
dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
frozen_output = model.get_input_embeddings()(dummy_input)
self.assertTrue(frozen_output.requires_grad is False)
model.gradient_checkpointing_enable()
# Since here we attached the hook, the input should have requires_grad to set
# properly
non_frozen_output = model.get_input_embeddings()(dummy_input)
self.assertTrue(non_frozen_output.requires_grad is True)
# To repro the Trainer issue
dummy_input.requires_grad = False
for name, param in model.named_parameters():
if "lora" in name.lower():
self.assertTrue(param.requires_grad)
logits = model(dummy_input).logits
loss = logits.mean()
loss.backward()
for name, param in model.named_parameters():
if param.requires_grad:
self.assertTrue("lora" in name.lower())
self.assertTrue(param.grad is not None)
def test_peft_add_multi_adapter(self):
"""
Simple test that tests the basic usage of PEFT model through `from_pretrained`. This test tests if
add_adapter works as expected in multi-adapter setting.
"""
from peft import LoraConfig
from peft.tuners.tuners_utils import BaseTunerLayer
dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
is_peft_loaded = False
model = transformers_class.from_pretrained(model_id).to(torch_device)
logits_original_model = model(dummy_input).logits
peft_config = LoraConfig(init_lora_weights=False)
model.add_adapter(peft_config)
logits_adapter_1 = model(dummy_input)
model.add_adapter(peft_config, adapter_name="adapter-2")
logits_adapter_2 = model(dummy_input)
for _, m in model.named_modules():
if isinstance(m, BaseTunerLayer):
is_peft_loaded = True
break
self.assertTrue(is_peft_loaded)
# dummy generation
_ = model.generate(input_ids=dummy_input)
model.set_adapter("default")
self.assertTrue(model.active_adapters() == ["default"])
self.assertTrue(model.active_adapter() == "default")
model.set_adapter("adapter-2")
self.assertTrue(model.active_adapters() == ["adapter-2"])
self.assertTrue(model.active_adapter() == "adapter-2")
# Logits comparison
self.assertFalse(
torch.allclose(logits_adapter_1.logits, logits_adapter_2.logits, atol=1e-6, rtol=1e-6)
)
self.assertFalse(torch.allclose(logits_original_model, logits_adapter_2.logits, atol=1e-6, rtol=1e-6))
model.set_adapter(["adapter-2", "default"])
self.assertTrue(model.active_adapters() == ["adapter-2", "default"])
self.assertTrue(model.active_adapter() == "adapter-2")
logits_adapter_mixed = model(dummy_input)
self.assertFalse(
torch.allclose(logits_adapter_1.logits, logits_adapter_mixed.logits, atol=1e-6, rtol=1e-6)
)
self.assertFalse(
torch.allclose(logits_adapter_2.logits, logits_adapter_mixed.logits, atol=1e-6, rtol=1e-6)
)
# multi active adapter saving not supported
with self.assertRaises(ValueError), tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
def test_delete_adapter(self):
"""
Enhanced test for `delete_adapter` to handle multiple adapters,
edge cases, and proper error handling.
"""
from peft import LoraConfig
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
model = transformers_class.from_pretrained(model_id).to(torch_device)
# Add multiple adapters
peft_config_1 = LoraConfig(init_lora_weights=False)
peft_config_2 = LoraConfig(init_lora_weights=False)
model.add_adapter(peft_config_1, adapter_name="adapter_1")
model.add_adapter(peft_config_2, adapter_name="adapter_2")
# Ensure adapters were added
self.assertIn("adapter_1", model.peft_config)
self.assertIn("adapter_2", model.peft_config)
# Delete a single adapter
model.delete_adapter("adapter_1")
self.assertNotIn("adapter_1", model.peft_config)
self.assertIn("adapter_2", model.peft_config)
# Delete remaining adapter
model.delete_adapter("adapter_2")
self.assertNotIn("adapter_2", model.peft_config)
self.assertFalse(model._hf_peft_config_loaded)
# Re-add adapters for edge case tests
model.add_adapter(peft_config_1, adapter_name="adapter_1")
model.add_adapter(peft_config_2, adapter_name="adapter_2")
# Attempt to delete multiple adapters at once
model.delete_adapter(["adapter_1", "adapter_2"])
self.assertNotIn("adapter_1", model.peft_config)
self.assertNotIn("adapter_2", model.peft_config)
self.assertFalse(model._hf_peft_config_loaded)
# Test edge cases
with self.assertRaisesRegex(ValueError, "The following adapter\\(s\\) are not present"):
model.delete_adapter("nonexistent_adapter")
with self.assertRaisesRegex(ValueError, "The following adapter\\(s\\) are not present"):
model.delete_adapter(["adapter_1", "nonexistent_adapter"])
# Deleting with an empty list or None should not raise errors
model.add_adapter(peft_config_1, adapter_name="adapter_1")
model.add_adapter(peft_config_2, adapter_name="adapter_2")
model.delete_adapter([]) # No-op
self.assertIn("adapter_1", model.peft_config)
self.assertIn("adapter_2", model.peft_config)
model.delete_adapter(None) # No-op
self.assertIn("adapter_1", model.peft_config)
self.assertIn("adapter_2", model.peft_config)
# Deleting duplicate adapter names in the list
model.delete_adapter(["adapter_1", "adapter_1"])
self.assertNotIn("adapter_1", model.peft_config)
self.assertIn("adapter_2", model.peft_config)
@require_torch_gpu
@require_bitsandbytes
def test_peft_from_pretrained_kwargs(self):
"""
Simple test that tests the basic usage of PEFT model through `from_pretrained` + additional kwargs
and see if the integraiton behaves as expected.
"""
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
module = peft_model.model.decoder.layers[0].self_attn.v_proj
self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
self.assertTrue(peft_model.hf_device_map is not None)
# dummy generation
_ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))
@require_torch_accelerator
@require_bitsandbytes
def test_peft_save_quantized(self):
"""
Simple test that tests the basic usage of PEFT model save_pretrained with quantized base models
"""
# 4bit
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
module = peft_model.model.decoder.layers[0].self_attn.v_proj
self.assertTrue(module.__class__.__name__ == "Linear4bit")
self.assertTrue(peft_model.hf_device_map is not None)
with tempfile.TemporaryDirectory() as tmpdirname:
peft_model.save_pretrained(tmpdirname)
self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))
# 8-bit
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
module = peft_model.model.decoder.layers[0].self_attn.v_proj
self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
self.assertTrue(peft_model.hf_device_map is not None)
with tempfile.TemporaryDirectory() as tmpdirname:
peft_model.save_pretrained(tmpdirname)
self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))
@require_torch_accelerator
@require_bitsandbytes
def test_peft_save_quantized_regression(self):
"""
Simple test that tests the basic usage of PEFT model save_pretrained with quantized base models
Regression test to make sure everything works as expected before the safetensors integration.
"""
# 4bit
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
module = peft_model.model.decoder.layers[0].self_attn.v_proj
self.assertTrue(module.__class__.__name__ == "Linear4bit")
self.assertTrue(peft_model.hf_device_map is not None)
with tempfile.TemporaryDirectory() as tmpdirname:
peft_model.save_pretrained(tmpdirname, safe_serialization=False)
self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))
# 8-bit
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
module = peft_model.model.decoder.layers[0].self_attn.v_proj
self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
self.assertTrue(peft_model.hf_device_map is not None)
with tempfile.TemporaryDirectory() as tmpdirname:
peft_model.save_pretrained(tmpdirname, safe_serialization=False)
self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))
def test_peft_pipeline(self):
"""
Simple test that tests the basic usage of PEFT model + pipeline
"""
from transformers import pipeline
for adapter_id, base_model_id in zip(self.peft_test_model_ids, self.transformers_test_model_ids):
peft_pipe = pipeline("text-generation", adapter_id)
base_pipe = pipeline("text-generation", base_model_id)
peft_params = list(peft_pipe.model.parameters())
base_params = list(base_pipe.model.parameters())
self.assertNotEqual(len(peft_params), len(base_params)) # Assert we actually loaded the adapter too
_ = peft_pipe("Hello")
def test_peft_add_adapter_with_state_dict(self):
"""
Simple test that tests the basic usage of PEFT model through `from_pretrained`. This test tests if
add_adapter works as expected with a state_dict being passed.
"""
from peft import LoraConfig
dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
for model_id, peft_model_id in zip(self.transformers_test_model_ids, self.peft_test_model_ids):
for transformers_class in self.transformers_test_model_classes:
model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig(init_lora_weights=False)
with self.assertRaises(ValueError):
model.load_adapter(peft_model_id=None)
state_dict_path = hf_hub_download(peft_model_id, "adapter_model.bin")
dummy_state_dict = torch.load(state_dict_path)
model.load_adapter(adapter_state_dict=dummy_state_dict, peft_config=peft_config)
with self.assertRaises(ValueError):
model.load_adapter(model.load_adapter(adapter_state_dict=dummy_state_dict, peft_config=None))
self.assertTrue(self._check_lora_correctly_converted(model))
# dummy generation
_ = model.generate(input_ids=dummy_input)
def test_peft_add_adapter_with_state_dict_low_cpu_mem_usage(self):
"""
Check the usage of low_cpu_mem_usage, which is supported in PEFT >= 0.13.0
"""
from peft import LoraConfig
min_version_lcmu = "0.13.0"
is_lcmu_supported = version.parse(importlib.metadata.version("peft")) >= version.parse(min_version_lcmu)
for model_id, peft_model_id in zip(self.transformers_test_model_ids, self.peft_test_model_ids):
for transformers_class in self.transformers_test_model_classes:
model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig()
state_dict_path = hf_hub_download(peft_model_id, "adapter_model.bin")
dummy_state_dict = torch.load(state_dict_path)
# this should always work
model.load_adapter(
adapter_state_dict=dummy_state_dict, peft_config=peft_config, low_cpu_mem_usage=False
)
if is_lcmu_supported:
# if supported, this should not raise an error
model.load_adapter(
adapter_state_dict=dummy_state_dict,
adapter_name="other",
peft_config=peft_config,
low_cpu_mem_usage=True,
)
# after loading, no meta device should be remaining
self.assertFalse(any((p.device.type == "meta") for p in model.parameters()))
else:
err_msg = r"The version of PEFT you are using does not support `low_cpu_mem_usage` yet"
with self.assertRaisesRegex(ValueError, err_msg):
model.load_adapter(
adapter_state_dict=dummy_state_dict,
adapter_name="other",
peft_config=peft_config,
low_cpu_mem_usage=True,
)
def test_peft_from_pretrained_hub_kwargs(self):
"""
Tests different combinations of PEFT model + from_pretrained + hub kwargs
"""
peft_model_id = "peft-internal-testing/tiny-opt-lora-revision"
# This should not work
with self.assertRaises(OSError):
_ = AutoModelForCausalLM.from_pretrained(peft_model_id)
adapter_kwargs = {"revision": "test"}
# This should work
model = AutoModelForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
self.assertTrue(self._check_lora_correctly_converted(model))
model = OPTForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
self.assertTrue(self._check_lora_correctly_converted(model))
adapter_kwargs = {"revision": "main", "subfolder": "test_subfolder"}
model = AutoModelForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
self.assertTrue(self._check_lora_correctly_converted(model))
model = OPTForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
self.assertTrue(self._check_lora_correctly_converted(model))
def test_peft_from_pretrained_unexpected_keys_warning(self):
"""
Test for warning when loading a PEFT checkpoint with unexpected keys.
"""
from peft import LoraConfig
logger = logging.get_logger("transformers.integrations.peft")
for model_id, peft_model_id in zip(self.transformers_test_model_ids, self.peft_test_model_ids):
for transformers_class in self.transformers_test_model_classes:
model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig()
state_dict_path = hf_hub_download(peft_model_id, "adapter_model.bin")
dummy_state_dict = torch.load(state_dict_path)
# add unexpected key
dummy_state_dict["foobar"] = next(iter(dummy_state_dict.values()))
with CaptureLogger(logger) as cl:
model.load_adapter(
adapter_state_dict=dummy_state_dict, peft_config=peft_config, low_cpu_mem_usage=False
)
msg = "Loading adapter weights from state_dict led to unexpected keys not found in the model: foobar"
self.assertIn(msg, cl.out)
def test_peft_from_pretrained_missing_keys_warning(self):
"""
Test for warning when loading a PEFT checkpoint with missing keys.
"""
from peft import LoraConfig
logger = logging.get_logger("transformers.integrations.peft")
for model_id, peft_model_id in zip(self.transformers_test_model_ids, self.peft_test_model_ids):
for transformers_class in self.transformers_test_model_classes:
model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig()
state_dict_path = hf_hub_download(peft_model_id, "adapter_model.bin")
dummy_state_dict = torch.load(state_dict_path)
# remove a key so that we have missing keys
key = next(iter(dummy_state_dict.keys()))
del dummy_state_dict[key]
with CaptureLogger(logger) as cl:
model.load_adapter(
adapter_state_dict=dummy_state_dict,
peft_config=peft_config,
low_cpu_mem_usage=False,
adapter_name="other",
)
# Here we need to adjust the key name a bit to account for PEFT-specific naming.
# 1. Remove PEFT-specific prefix
# If merged after dropping Python 3.8, we can use: key = key.removeprefix(peft_prefix)
peft_prefix = "base_model.model."
key = key[len(peft_prefix) :]
# 2. Insert adapter name
prefix, _, suffix = key.rpartition(".")
key = f"{prefix}.other.{suffix}"
msg = f"Loading adapter weights from state_dict led to missing keys in the model: {key}"
self.assertIn(msg, cl.out)
def test_peft_load_adapter_training_inference_mode_true(self):
"""
By default, when loading an adapter, the whole model should be in eval mode and no parameter should have
requires_grad=False.
"""
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
peft_model.save_pretrained(tmpdirname)
model = transformers_class.from_pretrained(peft_model.config._name_or_path)
model.load_adapter(tmpdirname)
assert not any(p.requires_grad for p in model.parameters())
assert not any(m.training for m in model.modules())
del model
def test_peft_load_adapter_training_inference_mode_false(self):
"""
When passing is_trainable=True, the LoRA modules should be in training mode and their parameters should have
requires_grad=True.
"""
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
peft_model.save_pretrained(tmpdirname)
model = transformers_class.from_pretrained(peft_model.config._name_or_path)
model.load_adapter(tmpdirname, is_trainable=True)
for name, module in model.named_modules():
if len(list(module.children())):
# only check leaf modules
continue
if "lora_" in name:
assert module.training
assert all(p.requires_grad for p in module.parameters())
else:
assert not module.training
assert all(not p.requires_grad for p in module.parameters())
def test_prefix_tuning_trainer_load_best_model_at_end_error(self):
# Original issue: https://github.com/huggingface/peft/issues/2256
# There is a potential error when using load_best_model_at_end=True with a prompt learning PEFT method. This is
# because Trainer uses load_adapter under the hood but with some prompt learning methods, there is an
# optimization on the saved model to remove parameters that are not required for inference, which in turn
# requires a change to the model architecture. This is why load_adapter will fail in such cases and users should
# instead set load_best_model_at_end=False and use PeftModel.from_pretrained. As this is not obvious, we now
# intercept the error and add a helpful error message.
# This test checks this error message. It also tests the "happy path" (i.e. no error) when using LoRA.
from peft import LoraConfig, PrefixTuningConfig, TaskType, get_peft_model
# create a small sequence classification dataset (binary classification)
dataset = []
for i, row in enumerate(os.__doc__.splitlines()):
dataset.append({"text": row, "label": i % 2})
ds_train = Dataset.from_list(dataset)
ds_valid = ds_train
datasets = DatasetDict(
{
"train": ds_train,
"val": ds_valid,
}
)
# tokenizer for peft-internal-testing/tiny-OPTForCausalLM-lora cannot be loaded, thus using
# hf-internal-testing/tiny-random-OPTForCausalLM
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left", model_type="opt")
def tokenize_function(examples):
return tokenizer(examples["text"], max_length=128, truncation=True, padding="max_length")
tokenized_datasets = datasets.map(tokenize_function, batched=True)
# lora works, prefix-tuning is expected to raise an error
peft_configs = {
"lora": LoraConfig(task_type=TaskType.SEQ_CLS),
"prefix-tuning": PrefixTuningConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
prefix_projection=True,
num_virtual_tokens=10,
),
}
for peft_type, peft_config in peft_configs.items():
base_model = AutoModelForSequenceClassification.from_pretrained(model_id, num_labels=2)
base_model.config.pad_token_id = tokenizer.pad_token_id
peft_model = get_peft_model(base_model, peft_config)
with tempfile.TemporaryDirectory() as tmpdirname:
training_args = TrainingArguments(
output_dir=tmpdirname,
num_train_epochs=3,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
trainer = Trainer(
model=peft_model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["val"],
)
if peft_type == "lora":
# LoRA works with load_best_model_at_end
trainer.train()
else:
# prefix tuning does not work, but at least users should get a helpful error message
msg = "When using prompt learning PEFT methods such as PREFIX_TUNING"
with self.assertRaisesRegex(RuntimeError, msg):
trainer.train()