transformers/docs/source/model_doc/longformer.rst
elk-cloner 5362bb8a6b
Tf longformer for sequence classification (#8231)
* working on LongformerForSequenceClassification

* add TFLongformerForMultipleChoice

* add TFLongformerForTokenClassification

* use add_start_docstrings_to_model_forward

* test TFLongformerForSequenceClassification

* test TFLongformerForMultipleChoice

* test TFLongformerForTokenClassification

* remove test from repo

* add test and doc for TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerForMultipleChoice

* add requested classes to modeling_tf_auto.py
update dummy_tf_objects
fix tests
fix bugs in requested classes

* pass all tests except test_inputs_embeds

* sync with master

* pass all tests except test_inputs_embeds

* pass all tests

* pass all tests

* work on test_inputs_embeds

* fix style and quality

* make multi choice work

* fix TFLongformerForTokenClassification signature

* fix TFLongformerForMultipleChoice, TFLongformerForSequenceClassification signature

* fix mult choice

* fix mc hint

* fix input embeds

* fix input embeds

* refactor input embeds

* fix copy issue

* apply sylvains changes and clean more

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2020-11-19 10:37:27 -05:00

221 lines
9.3 KiB
ReStructuredText

Longformer
-----------------------------------------------------------------------------------------------------------------------
**DISCLAIMER:** This model is still a work in progress, if you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title>`__.
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Longformer model was presented in `Longformer: The Long-Document Transformer
<https://arxiv.org/pdf/2004.05150.pdf>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
The abstract from the paper is the following:
*Transformer-based models are unable to process long sequences due to their self-attention operation, which scales
quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention
mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or
longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local
windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In
contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our
pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on
WikiHop and TriviaQA.*
The Authors' code can be found `here <https://github.com/allenai/longformer>`__.
Longformer Self Attention
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Longformer self attention employs self attention on both a "local" context and a "global" context. Most tokens only
attend "locally" to each other meaning that each token attends to its :math:`\frac{1}{2} w` previous tokens and
:math:`\frac{1}{2} w` succeding tokens with :math:`w` being the window length as defined in
:obj:`config.attention_window`. Note that :obj:`config.attention_window` can be of type :obj:`List` to define a
different :math:`w` for each layer. A selected few tokens attend "globally" to all other tokens, as it is
conventionally done for all tokens in :obj:`BertSelfAttention`.
Note that "locally" and "globally" attending tokens are projected by different query, key and value matrices. Also note
that every "locally" attending token not only attends to tokens within its window :math:`w`, but also to all "globally"
attending tokens so that global attention is *symmetric*.
The user can define which tokens attend "locally" and which tokens attend "globally" by setting the tensor
:obj:`global_attention_mask` at run-time appropriately. All Longformer models employ the following logic for
:obj:`global_attention_mask`:
- 0: the token attends "locally",
- 1: the token attends "globally".
For more information please also refer to :meth:`~transformers.LongformerModel.forward` method.
Using Longformer self attention, the memory and time complexity of the query-key matmul operation, which usually
represents the memory and time bottleneck, can be reduced from :math:`\mathcal{O}(n_s \times n_s)` to
:math:`\mathcal{O}(n_s \times w)`, with :math:`n_s` being the sequence length and :math:`w` being the average window
size. It is assumed that the number of "globally" attending tokens is insignificant as compared to the number of
"locally" attending tokens.
For more information, please refer to the official `paper <https://arxiv.org/pdf/2004.05150.pdf>`__.
Training
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:class:`~transformers.LongformerForMaskedLM` is trained the exact same way :class:`~transformers.RobertaForMaskedLM` is
trained and should be used as follows:
.. code-block::
input_ids = tokenizer.encode('This is a sentence from [MASK] training data', return_tensors='pt')
mlm_labels = tokenizer.encode('This is a sentence from the training data', return_tensors='pt')
loss = model(input_ids, labels=input_ids, masked_lm_labels=mlm_labels)[0]
LongformerConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.LongformerConfig
:members:
LongformerTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.LongformerTokenizer
:members:
LongformerTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.LongformerTokenizerFast
:members:
Longformer specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.models.longformer.modeling_longformer.LongformerBaseModelOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_longformer.LongformerBaseModelOutputWithPooling
:members:
.. autoclass:: transformers.models.longformer.modeling_longformer.LongformerMaskedLMOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_longformer.LongformerQuestionAnsweringModelOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_longformer.LongformerSequenceClassifierOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_longformer.LongformerMultipleChoiceModelOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_longformer.LongformerTokenClassifierOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_tf_longformer.TFLongformerBaseModelOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_tf_longformer.TFLongformerBaseModelOutputWithPooling
:members:
.. autoclass:: transformers.models.longformer.modeling_tf_longformer.TFLongformerMaskedLMOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_tf_longformer.TFLongformerQuestionAnsweringModelOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_tf_longformer.TFLongformerSequenceClassifierOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_tf_longformer.TFLongformerMultipleChoiceModelOutput
:members:
.. autoclass:: transformers.models.longformer.modeling_tf_longformer.TFLongformerTokenClassifierOutput
:members:
LongformerModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.LongformerModel
:members: forward
LongformerForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.LongformerForMaskedLM
:members: forward
LongformerForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.LongformerForSequenceClassification
:members: forward
LongformerForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.LongformerForMultipleChoice
:members: forward
LongformerForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.LongformerForTokenClassification
:members: forward
LongformerForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.LongformerForQuestionAnswering
:members: forward
TFLongformerModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFLongformerModel
:members: call
TFLongformerForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFLongformerForMaskedLM
:members: call
TFLongformerForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFLongformerForQuestionAnswering
:members: call
TFLongformerForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFLongformerForSequenceClassification
:members: call
TFLongformerForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFLongformerForTokenClassification
:members: call
TFLongformerForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFLongformerForMultipleChoice
:members: call