mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* Per-folder tests reorganization Co-authored-by: sgugger <sylvain.gugger@gmail.com> Co-authored-by: Stas Bekman <stas@stason.org>
391 lines
17 KiB
Python
391 lines
17 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
|
|
from transformers.pipelines import PipelineException
|
|
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
|
|
|
|
from .test_pipelines_common import ANY, PipelineTestCaseMeta
|
|
|
|
|
|
@is_pipeline_test
|
|
class FillMaskPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
|
|
model_mapping = MODEL_FOR_MASKED_LM_MAPPING
|
|
tf_model_mapping = TF_MODEL_FOR_MASKED_LM_MAPPING
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="tf")
|
|
outputs = unmasker("My name is <mask>")
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=6),
|
|
[
|
|
{"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"},
|
|
{"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"},
|
|
],
|
|
)
|
|
|
|
outputs = unmasker("The largest city in France is <mask>")
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=6),
|
|
[
|
|
{
|
|
"sequence": "The largest city in France is grouped",
|
|
"score": 2.1e-05,
|
|
"token": 38015,
|
|
"token_str": " grouped",
|
|
},
|
|
{
|
|
"sequence": "The largest city in France is accuser",
|
|
"score": 2.1e-05,
|
|
"token": 25506,
|
|
"token_str": " accuser",
|
|
},
|
|
],
|
|
)
|
|
|
|
outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=6),
|
|
[
|
|
{"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
|
|
{"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"},
|
|
{"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="pt")
|
|
|
|
outputs = unmasker("My name is <mask>")
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=6),
|
|
[
|
|
{"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"},
|
|
{"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
|
|
],
|
|
)
|
|
|
|
outputs = unmasker("The largest city in France is <mask>")
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=6),
|
|
[
|
|
{
|
|
"sequence": "The largest city in France is Maul",
|
|
"score": 2.2e-05,
|
|
"token": 35676,
|
|
"token_str": " Maul",
|
|
},
|
|
{"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
|
|
],
|
|
)
|
|
|
|
outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=6),
|
|
[
|
|
{"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"},
|
|
{"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"},
|
|
{"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
|
|
],
|
|
)
|
|
|
|
outputs = unmasker("My name is <mask> <mask>", top_k=2)
|
|
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=6),
|
|
[
|
|
[
|
|
{
|
|
"score": 2.2e-05,
|
|
"token": 35676,
|
|
"token_str": " Maul",
|
|
"sequence": "<s>My name is Maul<mask></s>",
|
|
},
|
|
{"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"},
|
|
],
|
|
[
|
|
{
|
|
"score": 2.2e-05,
|
|
"token": 35676,
|
|
"token_str": " Maul",
|
|
"sequence": "<s>My name is<mask> Maul</s>",
|
|
},
|
|
{"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"},
|
|
],
|
|
],
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_large_model_pt(self):
|
|
unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="pt")
|
|
self.run_large_test(unmasker)
|
|
|
|
@slow
|
|
@require_tf
|
|
def test_large_model_tf(self):
|
|
unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="tf")
|
|
self.run_large_test(unmasker)
|
|
|
|
def run_large_test(self, unmasker):
|
|
outputs = unmasker("My name is <mask>")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"},
|
|
{"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"},
|
|
],
|
|
)
|
|
outputs = unmasker("The largest city in France is <mask>")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"sequence": "The largest city in France is Paris",
|
|
"score": 0.251,
|
|
"token": 2201,
|
|
"token_str": " Paris",
|
|
},
|
|
{
|
|
"sequence": "The largest city in France is Lyon",
|
|
"score": 0.214,
|
|
"token": 12790,
|
|
"token_str": " Lyon",
|
|
},
|
|
],
|
|
)
|
|
|
|
outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"},
|
|
{"sequence": "My name is Clara", "score": 0.000, "token": 13606, "token_str": " Clara"},
|
|
{"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_model_no_pad_pt(self):
|
|
unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="pt")
|
|
unmasker.tokenizer.pad_token_id = None
|
|
unmasker.tokenizer.pad_token = None
|
|
self.run_pipeline_test(unmasker, [])
|
|
|
|
@require_tf
|
|
def test_model_no_pad_tf(self):
|
|
unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="tf")
|
|
unmasker.tokenizer.pad_token_id = None
|
|
unmasker.tokenizer.pad_token = None
|
|
self.run_pipeline_test(unmasker, [])
|
|
|
|
def get_test_pipeline(self, model, tokenizer, feature_extractor):
|
|
if tokenizer is None or tokenizer.mask_token_id is None:
|
|
self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)")
|
|
|
|
fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
|
|
examples = [
|
|
f"This is another {tokenizer.mask_token} test",
|
|
]
|
|
return fill_masker, examples
|
|
|
|
def run_pipeline_test(self, fill_masker, examples):
|
|
tokenizer = fill_masker.tokenizer
|
|
model = fill_masker.model
|
|
|
|
outputs = fill_masker(
|
|
f"This is a {tokenizer.mask_token}",
|
|
)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
)
|
|
|
|
outputs = fill_masker([f"This is a {tokenizer.mask_token}"])
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
)
|
|
|
|
outputs = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."])
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
],
|
|
)
|
|
|
|
with self.assertRaises(ValueError):
|
|
fill_masker([None])
|
|
# No mask_token is not supported
|
|
with self.assertRaises(PipelineException):
|
|
fill_masker("This is")
|
|
|
|
self.run_test_top_k(model, tokenizer)
|
|
self.run_test_targets(model, tokenizer)
|
|
self.run_test_top_k_targets(model, tokenizer)
|
|
self.fill_mask_with_duplicate_targets_and_top_k(model, tokenizer)
|
|
self.fill_mask_with_multiple_masks(model, tokenizer)
|
|
|
|
def run_test_targets(self, model, tokenizer):
|
|
vocab = tokenizer.get_vocab()
|
|
targets = list(sorted(vocab.keys()))[:2]
|
|
# Pipeline argument
|
|
fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, targets=targets)
|
|
outputs = fill_masker(f"This is a {tokenizer.mask_token}")
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
)
|
|
target_ids = {vocab[el] for el in targets}
|
|
self.assertEqual(set(el["token"] for el in outputs), target_ids)
|
|
self.assertEqual(set(el["token_str"] for el in outputs), set(targets))
|
|
|
|
# Call argument
|
|
fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
|
|
outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
)
|
|
target_ids = {vocab[el] for el in targets}
|
|
self.assertEqual(set(el["token"] for el in outputs), target_ids)
|
|
self.assertEqual(set(el["token_str"] for el in outputs), set(targets))
|
|
|
|
# Score equivalence
|
|
outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
|
|
tokens = [top_mask["token_str"] for top_mask in outputs]
|
|
scores = [top_mask["score"] for top_mask in outputs]
|
|
|
|
unmasked_targets = fill_masker(f"This is a {tokenizer.mask_token}", targets=tokens)
|
|
target_scores = [top_mask["score"] for top_mask in unmasked_targets]
|
|
self.assertEqual(nested_simplify(scores), nested_simplify(target_scores))
|
|
|
|
# Raises with invalid
|
|
with self.assertRaises(ValueError):
|
|
outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[""])
|
|
with self.assertRaises(ValueError):
|
|
outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[])
|
|
with self.assertRaises(ValueError):
|
|
outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets="")
|
|
|
|
def run_test_top_k(self, model, tokenizer):
|
|
fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, top_k=2)
|
|
outputs = fill_masker(f"This is a {tokenizer.mask_token}")
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
)
|
|
|
|
fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
|
|
outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2)
|
|
self.assertEqual(
|
|
outputs2,
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
)
|
|
self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))
|
|
|
|
def run_test_top_k_targets(self, model, tokenizer):
|
|
vocab = tokenizer.get_vocab()
|
|
fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
|
|
|
|
# top_k=2, ntargets=3
|
|
targets = list(sorted(vocab.keys()))[:3]
|
|
outputs = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2, targets=targets)
|
|
|
|
# If we use the most probably targets, and filter differently, we should still
|
|
# have the same results
|
|
targets2 = [el["token_str"] for el in sorted(outputs, key=lambda x: x["score"], reverse=True)]
|
|
outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=3, targets=targets2)
|
|
|
|
# They should yield exactly the same result
|
|
self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))
|
|
|
|
def fill_mask_with_duplicate_targets_and_top_k(self, model, tokenizer):
|
|
fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
|
|
vocab = tokenizer.get_vocab()
|
|
# String duplicates + id duplicates
|
|
targets = list(sorted(vocab.keys()))[:3]
|
|
targets = [targets[0], targets[1], targets[0], targets[2], targets[1]]
|
|
outputs = fill_masker(f"My name is {tokenizer.mask_token}", targets=targets, top_k=10)
|
|
|
|
# The target list contains duplicates, so we can't output more
|
|
# than them
|
|
self.assertEqual(len(outputs), 3)
|
|
|
|
def fill_mask_with_multiple_masks(self, model, tokenizer):
|
|
fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
|
|
|
|
outputs = fill_masker(
|
|
f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}", top_k=2
|
|
)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
[
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
{"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
|
|
],
|
|
],
|
|
)
|