transformers/tests/models/paligemma/test_modeling_paligemma.py

600 lines
23 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch PaliGemma model."""
import gc
import unittest
import requests
from parameterized import parameterized
from transformers import (
PaliGemmaConfig,
PaliGemmaForConditionalGeneration,
PaliGemmaProcessor,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
require_read_token,
require_torch,
require_torch_sdpa,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
class PaliGemmaVisionText2TextModelTester:
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=0,
projector_hidden_act="gelu",
seq_length=25,
vision_feature_select_strategy="default",
vision_feature_layer=-1,
projection_dim=32,
text_config={
"model_type": "gemma",
"seq_length": 128,
"is_training": True,
# "use_input_mask": True,
"use_token_type_ids": False,
"use_labels": True,
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"num_key_value_heads": 1,
"head_dim": 8,
"intermediate_size": 37,
"hidden_activation": "gelu_pytorch_tanh",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 16,
"type_sequence_label_size": 2,
"initializer_range": 0.02,
"num_labels": 3,
"num_choices": 4,
"pad_token_id": 1,
},
is_training=True,
vision_config={
"use_labels": True,
"image_size": 20,
"patch_size": 5,
"num_image_tokens": 4,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"projection_dim": 32,
"num_key_value_heads": 1,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
use_cache=False,
):
self.parent = parent
self.ignore_index = ignore_index
# `image_token_index` is set to 0 to pass "resize_embeddings" test, do not modify
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.text_config = text_config
self.vision_config = vision_config
self.seq_length = seq_length
self.projection_dim = projection_dim
self.pad_token_id = text_config["pad_token_id"]
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = vision_config["num_channels"]
self.image_size = vision_config["image_size"]
self.encoder_seq_length = seq_length
self.use_cache = use_cache
def get_config(self):
return PaliGemmaConfig(
text_config=self.text_config,
vision_config=self.vision_config,
ignore_index=self.ignore_index,
image_token_index=self.image_token_index,
projector_hidden_act=self.projector_hidden_act,
projection_dim=self.projection_dim,
vision_feature_select_strategy=self.vision_feature_select_strategy,
vision_feature_layer=self.vision_feature_layer,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(self.pad_token_id).to(torch_device)
# set the 16 first tokens to be image, and ensure that no other tokens are image tokens
# do not change this unless you modified image size or patch size
input_ids[input_ids == config.image_token_index] = self.pad_token_id
input_ids[:, :16] = config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": input_ids,
"token_type_ids": torch.zeros_like(input_ids),
}
return config, inputs_dict
@require_torch
class PaliGemmaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `PaliGemmaForConditionalGeneration`.
"""
all_model_classes = (PaliGemmaForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (PaliGemmaForConditionalGeneration,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_torchscript = False
test_head_masking = False
def setUp(self):
self.model_tester = PaliGemmaVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=PaliGemmaConfig, has_text_modality=False)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
self.assertTrue(torch.allclose(out_embeds, out_ids))
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_cpu_offload(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_bin(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_safetensors(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_model_parallelism(self):
pass
@require_torch_sdpa
@slow
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
self.skipTest(
"Due to custom causal mask, there is a slightly too big difference between eager and sdpa in bfloat16."
)
@unittest.skip(
reason="PaliGemmma's SigLip encoder uses the same initialization scheme as the Flax original implementation"
)
def test_initialization(self):
pass
# TODO extend valid outputs to include this test @Molbap
@unittest.skip(reason="PaliGemma has currently one output format.")
def test_model_outputs_equivalence(self):
pass
# TODO fix the loss = nan in the testing configuration chosen @Molbap
@unittest.skip(reason="Edge case giving loss nan values in testing configuration.")
def test_determinism(self):
pass
@unittest.skip(reason="PaliGemma does not use feedforward chunking.")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
def test_save_load_low_cpu_mem_usage(self):
pass
@unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
def test_save_load_low_cpu_mem_usage_checkpoints(self):
pass
@unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
def test_save_load_low_cpu_mem_usage_no_safetensors(self):
pass
@unittest.skip(
reason="VLMs doen't accept inputs embeds and pixel values at the same time. So if the test passed for bacbone LM, it passes for VLM also"
)
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip(reason="TODO (@joao): fix me -- failing to produce similar results")
def test_static_cache_matches_dynamic(self):
pass
@slow
@require_torch
@require_read_token
class PaliGemmaForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224")
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def test_small_model_integration_test(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
prompt = ""
image_file = (
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = self.processor(images=raw_image, text=prompt, return_tensors="pt")
EXPECTED_INPUT_IDS = torch.tensor([[257152] * 256 + [2, 108]])
self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS))
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = "\ncow on the beach" # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
def test_small_model_integration_test_multiimage(self):
model_id = "google/paligemma-3b-ft-nlvr2-448" # checkpoint tuned for multiple images
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
processor = PaliGemmaProcessor.from_pretrained(model_id)
prompt = "answer en There is no snowman in any of the images. Is this true or false?"
stop_sign_image = Image.open(
requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw
)
snow_image = Image.open(
requests.get(
"https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg", stream=True
).raw
)
inputs = processor(text=prompt, images=[[snow_image, snow_image]], return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = "answer en There is no snowman in any of the images. Is this true or false?\nFalse"
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
# try another prompt with two different image this time
prompt = "answer en There is exactly one snowman. Is this true or false?"
inputs = processor(text=prompt, images=[[snow_image, stop_sign_image]], return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = "answer en There is exactly one snowman. Is this true or false?\nTrue"
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
def test_small_model_integration_test_paligemma_VQA(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
prompt = "answer en Where is the cow standing?"
image_file = (
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = self.processor(images=raw_image, text=prompt, return_tensors="pt").to(torch.float16)
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
EXPECTED_DECODED_TEXT = "answer en Where is the cow standing?\nbeach" # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
def test_small_model_integration_test_paligemma_empty_prompt(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
prompt = ""
image_file = (
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = self.processor(images=raw_image, text=prompt, return_tensors="pt").to(torch.float16)
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
EXPECTED_DECODED_TEXT = "\ncow on the beach" # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
def test_small_model_integration_test_paligemma_batched(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
prompts = [
"answer en Where is the cow standing?",
"",
]
image1 = Image.open(
requests.get(
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
stream=True,
).raw
)
image2 = image1
inputs = self.processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow on the beach"] # fmt: skip
self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
def test_small_model_integration_test_paligemma_batched_bf16(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(
model_id, revision="bfloat16", torch_dtype=torch.bfloat16
).to(torch_device)
# The first batch is longer in terms of text, the second will be padded.
prompts = [
"answer en Where is the cow standing?",
"",
]
image1 = Image.open(
requests.get(
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
stream=True,
).raw
)
image2 = image1
inputs = (
self.processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True)
.to(torch.bfloat16)
.to(torch_device)
)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow on the beach"] # fmt: skip
self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
def test_small_model_integration_test_paligemma_batched_f16(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(
model_id, revision="float16", torch_dtype=torch.float16
).to(torch_device)
# The first batch is longer in terms of text, the second will be padded.
prompts = [
"answer en Where is the cow standing?",
"",
]
image1 = Image.open(
requests.get(
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
stream=True,
).raw
)
image2 = image1
inputs = (
self.processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True)
.to(torch.float16)
.to(torch_device)
)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow on the beach"] # fmt: skip
self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
def test_integration_detection_bug(self):
# this is a reproducer of https://github.com/huggingface/transformers/issues/31425 where not enough context
# impacted negatively segmentation generations.
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(
model_id, revision="bfloat16", torch_dtype=torch.bfloat16
).to(torch_device)
prompt = ("detect shoe",)
image = Image.open(
requests.get(
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/shoe.png",
stream=True,
).raw
)
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(torch.bfloat16).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = "detect shoe\n<loc0051><loc0309><loc0708><loc0646> shoe" # fmt: skip
self.assertEqual(self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT)
def test_paligemma_index_error_bug(self):
# This is a reproducer of https://github.com/huggingface/transformers/pull/28032 and makes sure it does not happen anymore
# Please refer to that PR, or specifically https://github.com/huggingface/transformers/pull/28032#issuecomment-1860650043 for
# more details
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
# Simulate a super long prompt
prompt = "\n" * 200
image_file = (
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = self.processor(
images=raw_image,
text=prompt,
return_tensors="pt",
).to(torch.float16)
# Make sure that `generate` works
_ = model.generate(**inputs, max_new_tokens=20)
def test_paligemma_finetuning_with_suffixes_bf16(self):
# this is a supplementary test to ensure paligemma fine-tuning that relies on token_type_ids is robust to future changes
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(
model_id, revision="bfloat16", torch_dtype=torch.bfloat16
).to(torch_device)
# The first batch is longer in terms of text, the second will be padded.
prompts = [
"answer en Where is the cow standing?",
"",
]
suffixes = ["beach", "cow standing on the beach"]
image1 = Image.open(
requests.get(
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
stream=True,
).raw
)
image2 = image1
inputs = (
self.processor(images=[image1, image2], text=prompts, suffix=suffixes, return_tensors="pt", padding=True)
.to(torch.bfloat16)
.to(torch_device)
)
expected_labels = torch.tensor(
[266 * [-100] + [54901, 1], 262 * [-100] + [14706, 9980, 611, 573, 8318, 1]]
).to(torch_device)
assert torch.equal(inputs["labels"], expected_labels)
expected_token_type_ids = torch.tensor([266 * [0] + 2 * [1], 262 * [0] + 6 * [1]]).to(torch_device)
assert torch.equal(inputs["token_type_ids"], expected_token_type_ids)
output = model(**inputs)
# check that loss does not error out
_ = output.loss