mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 18:51:14 +06:00
502 lines
36 KiB
Python
502 lines
36 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Auto Model class. """
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import logging
|
|
|
|
from .modeling_tf_bert import TFBertModel, TFBertForMaskedLM, TFBertForSequenceClassification, TFBertForQuestionAnswering
|
|
from .modeling_tf_openai import TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel
|
|
from .modeling_tf_gpt2 import TFGPT2Model, TFGPT2LMHeadModel
|
|
from .modeling_tf_transfo_xl import TFTransfoXLModel, TFTransfoXLLMHeadModel
|
|
from .modeling_tf_xlnet import TFXLNetModel, TFXLNetLMHeadModel, TFXLNetForSequenceClassification, TFXLNetForQuestionAnsweringSimple
|
|
from .modeling_tf_xlm import TFXLMModel, TFXLMWithLMHeadModel, TFXLMForSequenceClassification, TFXLMForQuestionAnsweringSimple
|
|
from .modeling_tf_roberta import TFRobertaModel, TFRobertaForMaskedLM, TFRobertaForSequenceClassification
|
|
from .modeling_tf_distilbert import TFDistilBertModel, TFDistilBertForQuestionAnswering, TFDistilBertForMaskedLM, TFDistilBertForSequenceClassification
|
|
|
|
from .file_utils import add_start_docstrings
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class TFAutoModel(object):
|
|
r"""
|
|
:class:`~pytorch_transformers.TFAutoModel` is a generic model class
|
|
that will be instantiated as one of the base model classes of the library
|
|
when created with the `TFAutoModel.from_pretrained(pretrained_model_name_or_path)`
|
|
class method.
|
|
|
|
The `from_pretrained()` method takes care of returning the correct model class instance
|
|
using pattern matching on the `pretrained_model_name_or_path` string.
|
|
|
|
The base model class to instantiate is selected as the first pattern matching
|
|
in the `pretrained_model_name_or_path` string (in the following order):
|
|
- contains `distilbert`: TFDistilBertModel (DistilBERT model)
|
|
- contains `roberta`: TFRobertaModel (RoBERTa model)
|
|
- contains `bert`: TFBertModel (Bert model)
|
|
- contains `openai-gpt`: TFOpenAIGPTModel (OpenAI GPT model)
|
|
- contains `gpt2`: TFGPT2Model (OpenAI GPT-2 model)
|
|
- contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model)
|
|
- contains `xlnet`: TFXLNetModel (XLNet model)
|
|
- contains `xlm`: TFXLMModel (XLM model)
|
|
|
|
This class cannot be instantiated using `__init__()` (throws an error).
|
|
"""
|
|
def __init__(self):
|
|
raise EnvironmentError("TFAutoModel is designed to be instantiated "
|
|
"using the `TFAutoModel.from_pretrained(pretrained_model_name_or_path)` method.")
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
|
r""" Instantiates one of the base model classes of the library
|
|
from a pre-trained model configuration.
|
|
|
|
The model class to instantiate is selected as the first pattern matching
|
|
in the `pretrained_model_name_or_path` string (in the following order):
|
|
- contains `distilbert`: TFDistilBertModel (DistilBERT model)
|
|
- contains `roberta`: TFRobertaModel (RoBERTa model)
|
|
- contains `bert`: TFTFBertModel (Bert model)
|
|
- contains `openai-gpt`: TFOpenAIGPTModel (OpenAI GPT model)
|
|
- contains `gpt2`: TFGPT2Model (OpenAI GPT-2 model)
|
|
- contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model)
|
|
- contains `xlnet`: TFXLNetModel (XLNet model)
|
|
- contains `xlm`: TFXLMModel (XLM model)
|
|
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
|
|
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
|
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
|
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
|
|
|
|
from_pt: (`Optional`) Boolean
|
|
Set to True if the Checkpoint is a PyTorch checkpoint.
|
|
|
|
model_args: (`optional`) Sequence of positional arguments:
|
|
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
|
|
|
|
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
|
|
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
|
|
|
|
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
|
|
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
|
|
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
|
|
|
|
state_dict: (`optional`) dict:
|
|
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
|
|
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
|
|
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.
|
|
|
|
cache_dir: (`optional`) string:
|
|
Path to a directory in which a downloaded pre-trained model
|
|
configuration should be cached if the standard cache should not be used.
|
|
|
|
force_download: (`optional`) boolean, default False:
|
|
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
|
|
|
|
proxies: (`optional`) dict, default None:
|
|
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
|
|
The proxies are used on each request.
|
|
|
|
output_loading_info: (`optional`) boolean:
|
|
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
|
|
|
|
kwargs: (`optional`) Remaining dictionary of keyword arguments:
|
|
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
|
|
|
|
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
|
|
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
|
|
|
|
Examples::
|
|
|
|
model = TFAutoModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
|
|
model = TFAutoModel.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
|
model = TFAutoModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
|
|
assert model.config.output_attention == True
|
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
|
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
|
|
model = TFAutoModel.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
|
|
|
|
"""
|
|
if 'distilbert' in pretrained_model_name_or_path:
|
|
return TFDistilBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'roberta' in pretrained_model_name_or_path:
|
|
return TFRobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'bert' in pretrained_model_name_or_path:
|
|
return TFBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'openai-gpt' in pretrained_model_name_or_path:
|
|
return TFOpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'gpt2' in pretrained_model_name_or_path:
|
|
return TFGPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'transfo-xl' in pretrained_model_name_or_path:
|
|
return TFTransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'xlnet' in pretrained_model_name_or_path:
|
|
return TFXLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'xlm' in pretrained_model_name_or_path:
|
|
return TFXLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
|
|
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
|
|
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
|
|
"'xlm', 'roberta'".format(pretrained_model_name_or_path))
|
|
|
|
|
|
class TFAutoModelWithLMHead(object):
|
|
r"""
|
|
:class:`~pytorch_transformers.TFAutoModelWithLMHead` is a generic model class
|
|
that will be instantiated as one of the language modeling model classes of the library
|
|
when created with the `TFAutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)`
|
|
class method.
|
|
|
|
The `from_pretrained()` method takes care of returning the correct model class instance
|
|
using pattern matching on the `pretrained_model_name_or_path` string.
|
|
|
|
The model class to instantiate is selected as the first pattern matching
|
|
in the `pretrained_model_name_or_path` string (in the following order):
|
|
- contains `distilbert`: TFDistilBertForMaskedLM (DistilBERT model)
|
|
- contains `roberta`: TFRobertaForMaskedLM (RoBERTa model)
|
|
- contains `bert`: TFBertForMaskedLM (Bert model)
|
|
- contains `openai-gpt`: TFOpenAIGPTLMHeadModel (OpenAI GPT model)
|
|
- contains `gpt2`: TFGPT2LMHeadModel (OpenAI GPT-2 model)
|
|
- contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model)
|
|
- contains `xlnet`: TFXLNetLMHeadModel (XLNet model)
|
|
- contains `xlm`: TFXLMWithLMHeadModel (XLM model)
|
|
|
|
This class cannot be instantiated using `__init__()` (throws an error).
|
|
"""
|
|
def __init__(self):
|
|
raise EnvironmentError("TFAutoModelWithLMHead is designed to be instantiated "
|
|
"using the `TFAutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
|
r""" Instantiates one of the language modeling model classes of the library
|
|
from a pre-trained model configuration.
|
|
|
|
The `from_pretrained()` method takes care of returning the correct model class instance
|
|
using pattern matching on the `pretrained_model_name_or_path` string.
|
|
|
|
The model class to instantiate is selected as the first pattern matching
|
|
in the `pretrained_model_name_or_path` string (in the following order):
|
|
- contains `distilbert`: TFDistilBertForMaskedLM (DistilBERT model)
|
|
- contains `roberta`: TFRobertaForMaskedLM (RoBERTa model)
|
|
- contains `bert`: TFBertForMaskedLM (Bert model)
|
|
- contains `openai-gpt`: TFOpenAIGPTLMHeadModel (OpenAI GPT model)
|
|
- contains `gpt2`: TFGPT2LMHeadModel (OpenAI GPT-2 model)
|
|
- contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model)
|
|
- contains `xlnet`: TFXLNetLMHeadModel (XLNet model)
|
|
- contains `xlm`: TFXLMWithLMHeadModel (XLM model)
|
|
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
|
|
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
|
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
|
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
|
|
|
|
from_pt: (`Optional`) Boolean
|
|
Set to True if the Checkpoint is a PyTorch checkpoint.
|
|
|
|
model_args: (`optional`) Sequence of positional arguments:
|
|
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
|
|
|
|
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
|
|
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
|
|
|
|
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
|
|
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
|
|
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
|
|
|
|
state_dict: (`optional`) dict:
|
|
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
|
|
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
|
|
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.
|
|
|
|
cache_dir: (`optional`) string:
|
|
Path to a directory in which a downloaded pre-trained model
|
|
configuration should be cached if the standard cache should not be used.
|
|
|
|
force_download: (`optional`) boolean, default False:
|
|
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
|
|
|
|
proxies: (`optional`) dict, default None:
|
|
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
|
|
The proxies are used on each request.
|
|
|
|
output_loading_info: (`optional`) boolean:
|
|
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
|
|
|
|
kwargs: (`optional`) Remaining dictionary of keyword arguments:
|
|
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
|
|
|
|
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
|
|
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
|
|
|
|
Examples::
|
|
|
|
model = TFAutoModelWithLMHead.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
|
|
model = TFAutoModelWithLMHead.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
|
model = TFAutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
|
|
assert model.config.output_attention == True
|
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
|
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
|
|
model = TFAutoModelWithLMHead.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
|
|
|
|
"""
|
|
if 'distilbert' in pretrained_model_name_or_path:
|
|
return TFDistilBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'roberta' in pretrained_model_name_or_path:
|
|
return TFRobertaForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'bert' in pretrained_model_name_or_path:
|
|
return TFBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'openai-gpt' in pretrained_model_name_or_path:
|
|
return TFOpenAIGPTLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'gpt2' in pretrained_model_name_or_path:
|
|
return TFGPT2LMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'transfo-xl' in pretrained_model_name_or_path:
|
|
return TFTransfoXLLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'xlnet' in pretrained_model_name_or_path:
|
|
return TFXLNetLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'xlm' in pretrained_model_name_or_path:
|
|
return TFXLMWithLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
|
|
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
|
|
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
|
|
"'xlm', 'roberta'".format(pretrained_model_name_or_path))
|
|
|
|
|
|
class TFAutoModelForSequenceClassification(object):
|
|
r"""
|
|
:class:`~pytorch_transformers.TFAutoModelForSequenceClassification` is a generic model class
|
|
that will be instantiated as one of the sequence classification model classes of the library
|
|
when created with the `TFAutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)`
|
|
class method.
|
|
|
|
The `from_pretrained()` method takes care of returning the correct model class instance
|
|
using pattern matching on the `pretrained_model_name_or_path` string.
|
|
|
|
The model class to instantiate is selected as the first pattern matching
|
|
in the `pretrained_model_name_or_path` string (in the following order):
|
|
- contains `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model)
|
|
- contains `roberta`: TFRobertaForSequenceClassification (RoBERTa model)
|
|
- contains `bert`: TFBertForSequenceClassification (Bert model)
|
|
- contains `xlnet`: TFXLNetForSequenceClassification (XLNet model)
|
|
- contains `xlm`: TFXLMForSequenceClassification (XLM model)
|
|
|
|
This class cannot be instantiated using `__init__()` (throws an error).
|
|
"""
|
|
def __init__(self):
|
|
raise EnvironmentError("TFAutoModelWithLMHead is designed to be instantiated "
|
|
"using the `TFAutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
|
r""" Instantiates one of the sequence classification model classes of the library
|
|
from a pre-trained model configuration.
|
|
|
|
The `from_pretrained()` method takes care of returning the correct model class instance
|
|
using pattern matching on the `pretrained_model_name_or_path` string.
|
|
|
|
The model class to instantiate is selected as the first pattern matching
|
|
in the `pretrained_model_name_or_path` string (in the following order):
|
|
- contains `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model)
|
|
- contains `roberta`: TFRobertaForSequenceClassification (RoBERTa model)
|
|
- contains `bert`: TFBertForSequenceClassification (Bert model)
|
|
- contains `xlnet`: TFXLNetForSequenceClassification (XLNet model)
|
|
- contains `xlm`: TFXLMForSequenceClassification (XLM model)
|
|
|
|
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
|
|
To train the model, you should first set it back in training mode with `model.train()`
|
|
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
|
|
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
|
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
|
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
|
|
|
|
from_pt: (`Optional`) Boolean
|
|
Set to True if the Checkpoint is a PyTorch checkpoint.
|
|
|
|
model_args: (`optional`) Sequence of positional arguments:
|
|
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
|
|
|
|
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
|
|
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
|
|
|
|
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
|
|
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
|
|
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
|
|
|
|
state_dict: (`optional`) dict:
|
|
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
|
|
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
|
|
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.
|
|
|
|
cache_dir: (`optional`) string:
|
|
Path to a directory in which a downloaded pre-trained model
|
|
configuration should be cached if the standard cache should not be used.
|
|
|
|
force_download: (`optional`) boolean, default False:
|
|
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
|
|
|
|
proxies: (`optional`) dict, default None:
|
|
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
|
|
The proxies are used on each request.
|
|
|
|
output_loading_info: (`optional`) boolean:
|
|
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
|
|
|
|
kwargs: (`optional`) Remaining dictionary of keyword arguments:
|
|
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
|
|
|
|
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
|
|
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
|
|
|
|
Examples::
|
|
|
|
model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
|
|
model = TFAutoModelForSequenceClassification.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
|
model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
|
|
assert model.config.output_attention == True
|
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
|
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
|
|
model = TFAutoModelForSequenceClassification.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
|
|
|
|
"""
|
|
if 'distilbert' in pretrained_model_name_or_path:
|
|
return TFDistilBertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'roberta' in pretrained_model_name_or_path:
|
|
return TFRobertaForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'bert' in pretrained_model_name_or_path:
|
|
return TFBertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'xlnet' in pretrained_model_name_or_path:
|
|
return TFXLNetForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'xlm' in pretrained_model_name_or_path:
|
|
return TFXLMForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
|
|
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
|
|
"'bert', 'xlnet', 'xlm', 'roberta'".format(pretrained_model_name_or_path))
|
|
|
|
|
|
class TFAutoModelForQuestionAnswering(object):
|
|
r"""
|
|
:class:`~pytorch_transformers.TFAutoModelForQuestionAnswering` is a generic model class
|
|
that will be instantiated as one of the question answering model classes of the library
|
|
when created with the `TFAutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)`
|
|
class method.
|
|
|
|
The `from_pretrained()` method takes care of returning the correct model class instance
|
|
using pattern matching on the `pretrained_model_name_or_path` string.
|
|
|
|
The model class to instantiate is selected as the first pattern matching
|
|
in the `pretrained_model_name_or_path` string (in the following order):
|
|
- contains `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model)
|
|
- contains `bert`: TFBertForQuestionAnswering (Bert model)
|
|
- contains `xlnet`: TFXLNetForQuestionAnswering (XLNet model)
|
|
- contains `xlm`: TFXLMForQuestionAnswering (XLM model)
|
|
|
|
This class cannot be instantiated using `__init__()` (throws an error).
|
|
"""
|
|
def __init__(self):
|
|
raise EnvironmentError("TFAutoModelWithLMHead is designed to be instantiated "
|
|
"using the `TFAutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
|
r""" Instantiates one of the question answering model classes of the library
|
|
from a pre-trained model configuration.
|
|
|
|
The `from_pretrained()` method takes care of returning the correct model class instance
|
|
using pattern matching on the `pretrained_model_name_or_path` string.
|
|
|
|
The model class to instantiate is selected as the first pattern matching
|
|
in the `pretrained_model_name_or_path` string (in the following order):
|
|
- contains `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model)
|
|
- contains `bert`: TFBertForQuestionAnswering (Bert model)
|
|
- contains `xlnet`: TFXLNetForQuestionAnswering (XLNet model)
|
|
- contains `xlm`: TFXLMForQuestionAnswering (XLM model)
|
|
|
|
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
|
|
To train the model, you should first set it back in training mode with `model.train()`
|
|
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
|
|
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
|
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
|
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
|
|
|
|
from_pt: (`Optional`) Boolean
|
|
Set to True if the Checkpoint is a PyTorch checkpoint.
|
|
|
|
model_args: (`optional`) Sequence of positional arguments:
|
|
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
|
|
|
|
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
|
|
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
|
|
|
|
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
|
|
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
|
|
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
|
|
|
|
state_dict: (`optional`) dict:
|
|
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
|
|
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
|
|
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.
|
|
|
|
cache_dir: (`optional`) string:
|
|
Path to a directory in which a downloaded pre-trained model
|
|
configuration should be cached if the standard cache should not be used.
|
|
|
|
force_download: (`optional`) boolean, default False:
|
|
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
|
|
|
|
proxies: (`optional`) dict, default None:
|
|
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
|
|
The proxies are used on each request.
|
|
|
|
output_loading_info: (`optional`) boolean:
|
|
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
|
|
|
|
kwargs: (`optional`) Remaining dictionary of keyword arguments:
|
|
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
|
|
|
|
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
|
|
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
|
|
|
|
Examples::
|
|
|
|
model = TFAutoModelForQuestionAnswering.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
|
|
model = TFAutoModelForQuestionAnswering.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
|
model = TFAutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
|
|
assert model.config.output_attention == True
|
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
|
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
|
|
model = TFAutoModelForQuestionAnswering.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
|
|
|
|
"""
|
|
if 'distilbert' in pretrained_model_name_or_path:
|
|
return TFDistilBertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'bert' in pretrained_model_name_or_path:
|
|
return TFBertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'xlnet' in pretrained_model_name_or_path:
|
|
return TFXLNetForQuestionAnsweringSimple.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
elif 'xlm' in pretrained_model_name_or_path:
|
|
return TFXLMForQuestionAnsweringSimple.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
|
|
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
|
|
"'bert', 'xlnet', 'xlm'".format(pretrained_model_name_or_path))
|