transformers/tests/quantization/torchao_integration/test_torchao.py
Driss Guessous 279000bb70
Name change AOPermod -> ModuleFqn (#38456)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-06-03 15:43:31 +00:00

591 lines
22 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
from transformers.testing_utils import (
Expectations,
backend_empty_cache,
get_device_properties,
require_torch_accelerator,
require_torch_multi_accelerator,
require_torchao,
require_torchao_version_greater_or_equal,
torch_device,
)
from transformers.utils import is_torch_available, is_torchao_available
if is_torch_available():
import torch
if is_torchao_available():
# renamed in torchao 0.7.0, please install the latest torchao
from torchao.dtypes import (
AffineQuantizedTensor,
TensorCoreTiledLayout,
)
from torchao.quantization import (
Int8WeightOnlyConfig,
IntxWeightOnlyConfig,
MappingType,
ModuleFqnToConfig,
PerAxis,
)
from torchao.quantization.autoquant import AQMixin
if version.parse(importlib.metadata.version("torchao")) >= version.parse("0.8.0"):
from torchao.dtypes import Int4CPULayout
if version.parse(importlib.metadata.version("torchao")) >= version.parse("0.11.0"):
from torchao.dtypes import Int4XPULayout
def check_torchao_int4_wo_quantized(test_module, qlayer):
weight = qlayer.weight
test_module.assertEqual(weight.quant_min, 0)
test_module.assertEqual(weight.quant_max, 15)
test_module.assertTrue(isinstance(weight, AffineQuantizedTensor))
layout = None
if weight.device.type == "cpu":
layout = Int4CPULayout
elif weight.device.type == "xpu":
layout = Int4XPULayout
elif weight.device.type == "cuda":
layout = TensorCoreTiledLayout
test_module.assertTrue(isinstance(weight.tensor_impl._layout, layout))
def check_autoquantized(test_module, qlayer):
weight = qlayer.weight
test_module.assertTrue(isinstance(weight, AQMixin))
def check_forward(test_module, model, batch_size=1, context_size=1024):
# Test forward pass
with torch.no_grad():
out = model(torch.zeros([batch_size, context_size], device=model.device, dtype=torch.int32)).logits
test_module.assertEqual(out.shape[0], batch_size)
test_module.assertEqual(out.shape[1], context_size)
@require_torchao
@require_torchao_version_greater_or_equal("0.8.0")
class TorchAoConfigTest(unittest.TestCase):
def test_to_dict(self):
"""
Makes sure the config format is properly set
"""
quantization_config = TorchAoConfig("int4_weight_only")
torchao_orig_config = quantization_config.to_dict()
for key in torchao_orig_config:
self.assertEqual(getattr(quantization_config, key), torchao_orig_config[key])
def test_post_init_check(self):
"""
Test kwargs validations in TorchAoConfig
"""
_ = TorchAoConfig("int4_weight_only")
with self.assertRaisesRegex(ValueError, "Unsupported string quantization type"):
_ = TorchAoConfig("fp6")
with self.assertRaisesRegex(ValueError, "Unexpected keyword arg"):
_ = TorchAoConfig("int4_weight_only", group_size1=32)
def test_repr(self):
"""
Check that there is no error in the repr
"""
quantization_config = TorchAoConfig("int4_weight_only", modules_to_not_convert=["conv"], group_size=8)
repr(quantization_config)
def test_json_serializable(self):
"""
Check that the config dict can be JSON serialized.
"""
quantization_config = TorchAoConfig("int4_weight_only", group_size=32, layout=TensorCoreTiledLayout())
d = quantization_config.to_dict()
self.assertIsInstance(d["quant_type_kwargs"]["layout"], list)
self.assertTrue("inner_k_tiles" in d["quant_type_kwargs"]["layout"][1])
quantization_config.to_json_string(use_diff=False)
@require_torchao
@require_torchao_version_greater_or_equal("0.8.0")
class TorchAoTest(unittest.TestCase):
input_text = "What are we having for dinner?"
max_new_tokens = 10
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
device = "cpu"
quant_scheme_kwargs = (
{"group_size": 32, "layout": Int4CPULayout()}
if is_torchao_available() and version.parse(importlib.metadata.version("torchao")) >= version.parse("0.8.0")
else {"group_size": 32}
)
# called only once for all test in this class
@classmethod
def setUpClass(cls):
cls.EXPECTED_OUTPUT = "What are we having for dinner?\n- 1. What is the temperature outside"
def tearDown(self):
gc.collect()
backend_empty_cache(torch_device)
gc.collect()
def test_int4wo_quant(self):
"""
Simple LLM model testing int4 weight only quantization
"""
quant_config = TorchAoConfig("int4_weight_only", **self.quant_scheme_kwargs)
# Note: we quantize the bfloat16 model on the fly to int4
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
device_map=self.device,
quantization_config=quant_config,
)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
check_torchao_int4_wo_quantized(self, quantized_model.model.layers[0].self_attn.v_proj)
input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device)
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
def test_int4wo_quant_bfloat16_conversion(self):
"""
Testing the dtype of model will be modified to be bfloat16 for int4 weight only quantization
"""
quant_config = TorchAoConfig("int4_weight_only", **self.quant_scheme_kwargs)
# Note: we quantize the bfloat16 model on the fly to int4
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
device_map=self.device,
quantization_config=quant_config,
)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
check_torchao_int4_wo_quantized(self, quantized_model.model.layers[0].self_attn.v_proj)
input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device)
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
def test_int8_dynamic_activation_int8_weight_quant(self):
"""
Simple LLM model testing int8_dynamic_activation_int8_weight
"""
quant_config = TorchAoConfig("int8_dynamic_activation_int8_weight")
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=self.device,
quantization_config=quant_config,
)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device)
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
EXPECTED_OUTPUT = [
"What are we having for dinner?\n\nJessica: (smiling)",
"What are we having for dinner?\n\nJess: (smiling) I",
]
self.assertTrue(tokenizer.decode(output[0], skip_special_tokens=True) in EXPECTED_OUTPUT)
@require_torchao_version_greater_or_equal("0.11.0")
def test_include_input_output_embeddings(self):
weight_dtype = torch.int8
granularity = PerAxis(0)
mapping_type = MappingType.ASYMMETRIC
embedding_config = IntxWeightOnlyConfig(
weight_dtype=weight_dtype,
granularity=granularity,
mapping_type=mapping_type,
)
config = ModuleFqnToConfig(
{"_default": None, "model.embed_tokens": embedding_config, "lm_head": embedding_config}
)
# need set `include_input_output_embeddings` to True
quant_config = TorchAoConfig(quant_type=config, include_input_output_embeddings=True)
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=self.device,
quantization_config=quant_config,
)
# making sure embedding is quantized
self.assertTrue(isinstance(quantized_model.model.embed_tokens.weight, AffineQuantizedTensor))
self.assertTrue(isinstance(quantized_model.lm_head.weight, AffineQuantizedTensor))
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device)
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
EXPECTED_OUTPUT = [
"What are we having for dinner?\n\nJessica: (smiling)",
"What are we having for dinner?\n\nJess: (smiling) I",
]
self.assertTrue(tokenizer.decode(output[0], skip_special_tokens=True) in EXPECTED_OUTPUT)
@require_torchao_version_greater_or_equal("0.11.0")
def test_per_module_config_skip(self):
linear_config = Int8WeightOnlyConfig()
config = ModuleFqnToConfig({"_default": linear_config, "model.layers.0.self_attn.q_proj": None})
quant_config = TorchAoConfig(quant_type=config)
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=self.device,
quantization_config=quant_config,
)
# making sure `model.layers.0.self_attn.q_proj` is skipped
self.assertTrue(not isinstance(quantized_model.model.layers[0].self_attn.q_proj.weight, AffineQuantizedTensor))
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device)
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
EXPECTED_OUTPUT = [
"What are we having for dinner?\n\nJessica: (smiling)",
"What are we having for dinner?\n\nJess: (smiling) I",
]
self.assertTrue(tokenizer.decode(output[0], skip_special_tokens=True) in EXPECTED_OUTPUT)
@require_torch_accelerator
class TorchAoAcceleratorTest(TorchAoTest):
device = torch_device
quant_scheme_kwargs = {"group_size": 32}
# called only once for all test in this class
@classmethod
def setUpClass(cls):
super().setUpClass()
# fmt: off
EXPECTED_OUTPUTS = Expectations(
{
("xpu", 3): "What are we having for dinner?\n\nJessica: (smiling)",
("cuda", 7): "What are we having for dinner?\n- 1. What is the temperature outside",
}
)
# fmt: on
cls.EXPECTED_OUTPUT = EXPECTED_OUTPUTS.get_expectation()
def test_int4wo_offload(self):
"""
Simple test that checks if the quantized model int4 weight only is working properly with cpu/disk offload
"""
device_map_offload = {
"model.embed_tokens": 0,
"model.layers.0": 0,
"model.layers.1": 0,
"model.layers.2": 0,
"model.layers.3": 0,
"model.layers.4": 0,
"model.layers.5": 0,
"model.layers.6": 0,
"model.layers.7": 0,
"model.layers.8": 0,
"model.layers.9": 0,
"model.layers.10": 0,
"model.layers.11": 0,
"model.layers.12": 0,
"model.layers.13": 0,
"model.layers.14": 0,
"model.layers.15": 0,
"model.layers.16": 0,
"model.layers.17": 0,
"model.layers.18": 0,
"model.layers.19": "cpu",
"model.layers.20": "cpu",
"model.layers.21": "disk",
"model.norm": 0,
"model.rotary_emb": 0,
"lm_head": 0,
}
quant_config = TorchAoConfig("int4_weight_only", group_size=32)
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
device_map=device_map_offload,
quantization_config=quant_config,
)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device)
# fmt: off
EXPECTED_OUTPUTS = Expectations(
{
("xpu", 3): "What are we having for dinner?\n\nJessica: (smiling)",
("cuda", 7): "What are we having for dinner?\n- 2. What is the temperature outside",
}
)
# fmt: on
EXPECTED_OUTPUT = EXPECTED_OUTPUTS.get_expectation()
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
self.assertEqual(generated_text, EXPECTED_OUTPUT)
@require_torch_multi_accelerator
def test_int4wo_quant_multi_accelerator(self):
"""
Simple test that checks if the quantized model int4 weight only is working properly with multiple accelerators
set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 CUDA GPUs
set ZE_AFFINITY_MASK=0,1 if you have more than 2 Intel XPUs
"""
quant_config = TorchAoConfig("int4_weight_only", **self.quant_scheme_kwargs)
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quant_config,
)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1})
input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device)
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
def test_autoquant(self):
"""
Simple LLM model testing autoquant
"""
quant_config = TorchAoConfig("autoquant")
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype="auto",
device_map=self.device,
quantization_config=quant_config,
)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device)
output = quantized_model.generate(
**input_ids, max_new_tokens=self.max_new_tokens, cache_implementation="static"
)
quantized_model.finalize_autoquant()
check_autoquantized(self, quantized_model.model.layers[0].self_attn.v_proj)
EXPECTED_OUTPUT = "What are we having for dinner?\n\nJane: (sighs)"
output = quantized_model.generate(
**input_ids, max_new_tokens=self.max_new_tokens, cache_implementation="static"
)
self.assertEqual(tokenizer.decode(output[0], skip_special_tokens=True), EXPECTED_OUTPUT)
@require_torchao
@require_torchao_version_greater_or_equal("0.8.0")
class TorchAoSerializationTest(unittest.TestCase):
input_text = "What are we having for dinner?"
max_new_tokens = 10
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
quant_scheme = "int4_weight_only"
quant_scheme_kwargs = (
{"group_size": 32, "layout": Int4CPULayout()}
if is_torchao_available() and version.parse(importlib.metadata.version("torchao")) >= version.parse("0.8.0")
else {"group_size": 32}
)
device = "cpu"
# called only once for all test in this class
@classmethod
def setUpClass(cls):
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
cls.EXPECTED_OUTPUT = "What are we having for dinner?\n- 1. What is the temperature outside"
def setUp(self):
self.quant_config = TorchAoConfig(self.quant_scheme, **self.quant_scheme_kwargs)
torch_dtype = torch.bfloat16 if self.quant_scheme == "int4_weight_only" else "auto"
self.quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch_dtype,
device_map=self.device,
quantization_config=self.quant_config,
)
def tearDown(self):
gc.collect()
backend_empty_cache(torch_device)
gc.collect()
def test_original_model_expected_output(self):
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device)
output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
def check_serialization_expected_output(self, device, expected_output):
"""
Test if we can serialize and load/infer the model again on the same device
"""
torch_dtype = torch.bfloat16 if self.quant_scheme == "int4_weight_only" else "auto"
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname, safe_serialization=False)
loaded_quantized_model = AutoModelForCausalLM.from_pretrained(
tmpdirname, torch_dtype=torch_dtype, device_map=device
)
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(device)
output = loaded_quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), expected_output)
def test_serialization_expected_output(self):
self.check_serialization_expected_output(self.device, self.EXPECTED_OUTPUT)
class TorchAoSerializationW8A8CPUTest(TorchAoSerializationTest):
quant_scheme, quant_scheme_kwargs = "int8_dynamic_activation_int8_weight", {}
# called only once for all test in this class
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.EXPECTED_OUTPUT = "What are we having for dinner?\n\nJessica: (smiling)"
@require_torch_accelerator
def test_serialization_expected_output_on_accelerator(self):
"""
Test if we can serialize on device (cpu) and load/infer the model on accelerator
"""
self.check_serialization_expected_output(torch_device, self.EXPECTED_OUTPUT)
class TorchAoSerializationW8CPUTest(TorchAoSerializationTest):
quant_scheme, quant_scheme_kwargs = "int8_weight_only", {}
# called only once for all test in this class
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.EXPECTED_OUTPUT = "What are we having for dinner?\n\nJessica: (smiling)"
@require_torch_accelerator
def test_serialization_expected_output_on_accelerator(self):
"""
Test if we can serialize on device (cpu) and load/infer the model on accelerator
"""
self.check_serialization_expected_output(torch_device, self.EXPECTED_OUTPUT)
@require_torch_accelerator
class TorchAoSerializationAcceleratorTest(TorchAoSerializationTest):
quant_scheme, quant_scheme_kwargs = "int4_weight_only", {"group_size": 32}
device = f"{torch_device}:0"
# called only once for all test in this class
@classmethod
def setUpClass(cls):
super().setUpClass()
# fmt: off
EXPECTED_OUTPUTS = Expectations(
{
("xpu", 3): "What are we having for dinner?\n\nJessica: (smiling)",
("cuda", 7): "What are we having for dinner?\n- 1. What is the temperature outside",
}
)
# fmt: on
cls.EXPECTED_OUTPUT = EXPECTED_OUTPUTS.get_expectation()
@require_torch_accelerator
class TorchAoSerializationW8A8AcceleratorTest(TorchAoSerializationTest):
quant_scheme, quant_scheme_kwargs = "int8_dynamic_activation_int8_weight", {}
device = f"{torch_device}:0"
# called only once for all test in this class
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.EXPECTED_OUTPUT = "What are we having for dinner?\n\nJessica: (smiling)"
@require_torch_accelerator
class TorchAoSerializationW8AcceleratorTest(TorchAoSerializationTest):
quant_scheme, quant_scheme_kwargs = "int8_weight_only", {}
device = f"{torch_device}:0"
# called only once for all test in this class
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.EXPECTED_OUTPUT = "What are we having for dinner?\n\nJessica: (smiling)"
@require_torch_accelerator
@require_torchao_version_greater_or_equal("0.10.0")
class TorchAoSerializationFP8AcceleratorTest(TorchAoSerializationTest):
device = f"{torch_device}:0"
# called only once for all test in this class
@classmethod
def setUpClass(cls):
if get_device_properties()[0] == "cuda" and get_device_properties()[1] < 9:
raise unittest.SkipTest("CUDA compute capability 9.0 or higher required for FP8 tests")
from torchao.quantization import Float8WeightOnlyConfig
cls.quant_scheme = Float8WeightOnlyConfig()
cls.quant_scheme_kwargs = {}
super().setUpClass()
cls.EXPECTED_OUTPUT = "What are we having for dinner?\n\nJessica: (smiling)"
@require_torch_accelerator
@require_torchao_version_greater_or_equal("0.10.0")
class TorchAoSerializationA8W4Test(TorchAoSerializationTest):
device = f"{torch_device}:0"
# called only once for all test in this class
@classmethod
def setUpClass(cls):
if get_device_properties()[0] == "cuda" and get_device_properties()[1] < 9:
raise unittest.SkipTest("CUDA compute capability 9.0 or higher required for FP8 tests")
from torchao.quantization import Int8DynamicActivationInt4WeightConfig
cls.quant_scheme = Int8DynamicActivationInt4WeightConfig()
cls.quant_scheme_kwargs = {}
super().setUpClass()
cls.EXPECTED_OUTPUT = "What are we having for dinner?\n\nJessica: (smiling)"
if __name__ == "__main__":
unittest.main()