transformers/tests/models/colpali/test_processing_colpali.py
Lysandre Debut 54a123f068
Simplify soft dependencies and update the dummy-creation process (#36827)
* Reverse dependency map shouldn't be created when test_all is set

* [test_all] Remove dummies

* Modular fixes

* Update utils/check_repo.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* [test_all] Better docs

* [test_all] Update src/transformers/commands/chat.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* [test_all] Remove deprecated AdaptiveEmbeddings from the tests

* [test_all] Doc builder

* [test_all] is_dummy

* [test_all] Import utils

* [test_all] Doc building should not require all deps

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-04-11 11:08:36 +02:00

249 lines
10 KiB
Python

import shutil
import tempfile
import unittest
import torch
from transformers import GemmaTokenizer
from transformers.models.colpali.processing_colpali import ColPaliProcessor
from transformers.testing_utils import get_tests_dir, require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import (
ColPaliProcessor,
PaliGemmaProcessor,
SiglipImageProcessor,
)
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
@require_vision
class ColPaliProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = ColPaliProcessor
@classmethod
def setUpClass(cls):
cls.tmpdirname = tempfile.mkdtemp()
image_processor = SiglipImageProcessor.from_pretrained("google/siglip-so400m-patch14-384")
image_processor.image_seq_length = 0
tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True)
processor = PaliGemmaProcessor(image_processor=image_processor, tokenizer=tokenizer)
processor.save_pretrained(cls.tmpdirname)
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
@require_torch
@require_vision
def test_process_images(self):
# Processor configuration
image_input = self.prepare_image_inputs()
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer", max_length=112, padding="max_length")
image_processor.image_seq_length = 14
# Get the processor
processor = self.processor_class(
tokenizer=tokenizer,
image_processor=image_processor,
)
# Process the image
batch_feature = processor.process_images(images=image_input, return_tensors="pt")
# Assertions
self.assertIn("pixel_values", batch_feature)
self.assertEqual(batch_feature["pixel_values"].shape, torch.Size([1, 3, 384, 384]))
@require_torch
@require_vision
def test_process_queries(self):
# Inputs
queries = [
"Is attention really all you need?",
"Are Benjamin, Antoine, Merve, and Jo best friends?",
]
# Processor configuration
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer", max_length=112, padding="max_length")
image_processor.image_seq_length = 14
# Get the processor
processor = self.processor_class(
tokenizer=tokenizer,
image_processor=image_processor,
)
# Process the image
batch_feature = processor.process_queries(text=queries, return_tensors="pt")
# Assertions
self.assertIn("input_ids", batch_feature)
self.assertIsInstance(batch_feature["input_ids"], torch.Tensor)
self.assertEqual(batch_feature["input_ids"].shape[0], len(queries))
# The following tests are overwritten as ColPaliProcessor can only take one of images or text as input at a time
def test_tokenizer_defaults_preserved_by_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length")
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
inputs = processor(text=input_str, return_tensors="pt")
self.assertEqual(inputs[self.text_input_name].shape[-1], 117)
def test_image_processor_defaults_preserved_by_image_kwargs(self):
"""
We use do_rescale=True, rescale_factor=-1 to ensure that image_processor kwargs are preserved in the processor.
We then check that the mean of the pixel_values is less than or equal to 0 after processing.
Since the original pixel_values are in [0, 255], this is a good indicator that the rescale_factor is indeed applied.
"""
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor_components["image_processor"] = self.get_component(
"image_processor", do_rescale=True, rescale_factor=-1
)
processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length")
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
image_input = self.prepare_image_inputs()
inputs = processor(images=image_input, return_tensors="pt")
self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0)
def test_kwargs_overrides_default_tokenizer_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor_components["tokenizer"] = self.get_component("tokenizer", padding="longest")
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
inputs = processor(text=input_str, return_tensors="pt", max_length=112, padding="max_length")
self.assertEqual(inputs[self.text_input_name].shape[-1], 112)
def test_kwargs_overrides_default_image_processor_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor_components["image_processor"] = self.get_component(
"image_processor", do_rescale=True, rescale_factor=1
)
processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length")
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
image_input = self.prepare_image_inputs()
inputs = processor(images=image_input, do_rescale=True, rescale_factor=-1, return_tensors="pt")
self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0)
def test_unstructured_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
inputs = processor(
text=input_str,
return_tensors="pt",
do_rescale=True,
rescale_factor=-1,
padding="max_length",
max_length=76,
)
self.assertEqual(inputs[self.text_input_name].shape[-1], 76)
def test_unstructured_kwargs_batched(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
image_input = self.prepare_image_inputs(batch_size=2)
inputs = processor(
images=image_input,
return_tensors="pt",
do_rescale=True,
rescale_factor=-1,
padding="longest",
max_length=76,
)
self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0)
def test_doubly_passed_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
image_input = self.prepare_image_inputs()
with self.assertRaises(ValueError):
_ = processor(
images=image_input,
images_kwargs={"do_rescale": True, "rescale_factor": -1},
do_rescale=True,
return_tensors="pt",
)
def test_structured_kwargs_nested(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
# Define the kwargs for each modality
all_kwargs = {
"common_kwargs": {"return_tensors": "pt"},
"images_kwargs": {"do_rescale": True, "rescale_factor": -1},
"text_kwargs": {"padding": "max_length", "max_length": 76},
}
inputs = processor(text=input_str, **all_kwargs)
self.skip_processor_without_typed_kwargs(processor)
self.assertEqual(inputs[self.text_input_name].shape[-1], 76)
def test_structured_kwargs_nested_from_dict(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
image_input = self.prepare_image_inputs()
# Define the kwargs for each modality
all_kwargs = {
"common_kwargs": {"return_tensors": "pt"},
"images_kwargs": {"do_rescale": True, "rescale_factor": -1},
"text_kwargs": {"padding": "max_length", "max_length": 76},
}
inputs = processor(images=image_input, **all_kwargs)
self.assertEqual(inputs[self.text_input_name].shape[-1], 76)