mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* apply updates smolVLM (still needs workaround for chat template) * add other models * dump qwen omni for now, come back later * port qwen omni from their impl * wait, all qwens sample videos in same way! * clean up * make smolvlm backwards compatible and fix padding * dix some tests * fox smolvlm tests * more clean up and test fixing * delete unused arg * fix * address comments * style * fix test
117 lines
4.3 KiB
Python
117 lines
4.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torchvision_available, is_vision_available
|
|
|
|
from ...test_video_processing_common import VideoProcessingTestMixin, prepare_video_inputs
|
|
|
|
|
|
if is_vision_available():
|
|
if is_torchvision_available():
|
|
from transformers import InstructBlipVideoVideoProcessor
|
|
|
|
|
|
class InstructBlipVideoVideoProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=5,
|
|
num_channels=3,
|
|
num_frames=4,
|
|
min_resolution=30,
|
|
max_resolution=80,
|
|
do_resize=True,
|
|
size=None,
|
|
do_normalize=True,
|
|
image_mean=OPENAI_CLIP_MEAN,
|
|
image_std=OPENAI_CLIP_STD,
|
|
do_convert_rgb=True,
|
|
):
|
|
super().__init__()
|
|
size = size if size is not None else {"height": 18, "width": 18}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_frames = num_frames
|
|
self.num_channels = num_channels
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.do_convert_rgb = do_convert_rgb
|
|
|
|
def prepare_video_processor_dict(self):
|
|
return {
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_convert_rgb": self.do_convert_rgb,
|
|
}
|
|
|
|
def expected_output_video_shape(self, images):
|
|
return self.num_frames, self.num_channels, self.size["height"], self.size["width"]
|
|
|
|
def prepare_video_inputs(self, equal_resolution=False, return_tensors="pil"):
|
|
videos = prepare_video_inputs(
|
|
batch_size=self.batch_size,
|
|
num_frames=self.num_frames,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
return_tensors=return_tensors,
|
|
)
|
|
|
|
return videos
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class InstructBlipVideoProcessingTest(VideoProcessingTestMixin, unittest.TestCase):
|
|
fast_video_processing_class = InstructBlipVideoVideoProcessor if is_torchvision_available() else None
|
|
input_name = "pixel_values"
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.video_processor_tester = InstructBlipVideoVideoProcessingTester(self)
|
|
|
|
@property
|
|
def video_processor_dict(self):
|
|
return self.video_processor_tester.prepare_video_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
video_processing = self.fast_video_processing_class(**self.video_processor_dict)
|
|
self.assertTrue(hasattr(video_processing, "do_resize"))
|
|
self.assertTrue(hasattr(video_processing, "size"))
|
|
self.assertTrue(hasattr(video_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(video_processing, "image_mean"))
|
|
self.assertTrue(hasattr(video_processing, "image_std"))
|
|
self.assertTrue(hasattr(video_processing, "do_convert_rgb"))
|
|
|
|
def test_video_processor_from_dict_with_kwargs(self):
|
|
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict)
|
|
self.assertEqual(video_processor.size, {"height": 18, "width": 18})
|
|
|
|
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42)
|
|
self.assertEqual(video_processor.size, {"height": 42, "width": 42})
|