transformers/examples/contrib/run_camembert.py
2019-11-16 00:11:07 -05:00

49 lines
2.0 KiB
Python

from pathlib import Path
import tarfile
import urllib.request
import torch
from transformers.tokenization_camembert import CamembertTokenizer
from transformers.modeling_camembert import CamembertForMaskedLM
def fill_mask(masked_input, model, tokenizer, topk=5):
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count('<mask>') == 1
input_ids = torch.tensor(tokenizer.encode(masked_input, add_special_tokens=True)).unsqueeze(0) # Batch size 1
logits = model(input_ids)[0] # The last hidden-state is the first element of the output tuple
masked_index = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
logits = logits[0, masked_index, :]
prob = logits.softmax(dim=0)
values, indices = prob.topk(k=topk, dim=0)
topk_predicted_token_bpe = ' '.join([tokenizer.convert_ids_to_tokens(indices[i].item())
for i in range(len(indices))])
masked_token = tokenizer.mask_token
topk_filled_outputs = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ')):
predicted_token = predicted_token_bpe.replace('\u2581', ' ')
if " {0}".format(masked_token) in masked_input:
topk_filled_outputs.append((
masked_input.replace(
' {0}'.format(masked_token), predicted_token
),
values[index].item(),
predicted_token,
))
else:
topk_filled_outputs.append((
masked_input.replace(masked_token, predicted_token),
values[index].item(),
predicted_token,
))
return topk_filled_outputs
tokenizer = CamembertTokenizer.from_pretrained('camembert-base')
model = CamembertForMaskedLM.from_pretrained('camembert-base')
model.eval()
masked_input = "Le camembert est <mask> :)"
print(fill_mask(masked_input, model, tokenizer, topk=3))