mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* remove one of the last deps * update fast image processor after refactor * styling * more quality of life improvements * nit * update * cleanups * some cleanups * vllm updates * update fake image token * [convert] Fix typo * [convert] Strip extraneous bytes from shards * [convert] Minor fixes * [convert] Use num_experts * multi-image fixes in modeling + processor * fixup size * 128 experts * Use default rope * Unfuse mlp * simplify a lot inputs embeds merging * remove .item() 👀 * fix from review * Address feedback * Use None "default" for rope_scaling. Add eot. * set seed * return aspect ratios and bug fixes * Moe 128 rebased (#8) * 128 experts * Use default rope * Unfuse mlp * Address feedback * Use None "default" for rope_scaling. Add eot. * Meta/llama quant compat (#7) * add quant compatible model & conversion code for llama4 * fix a few issues * fix a few issues * minor type mapping fix --------- Co-authored-by: Lu Fang <fanglu@fb.com> * use a new config parameter to determine which model definition to use for MoE --------- Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: Lu Fang <fanglu@fb.com> * un-comment write_tokenizer from converting script * remove un-used imports * [llama4] Pop aspect_ratios from image processor output in Llama4Processor Signed-off-by: Jon Swenson <jmswen@gmail.com> * Fix parameter_count name * Update src/transformers/models/llama4/configuration_llama4.py * nit * Add changes for no_rope, moe_layers, chunked attention. Just need to test all * Update src/transformers/models/llama4/image_processing_llama4_fast.py * nit * fix post merge with main * support flex attention * fixes * fix * add layer * small updates * rebase and delete llm_compressor * nit * [llama4/mm] Add back <|image|> token that delimits global tile * [llama4/mm] Fix Llama 4 image processing unit tests * add explicit dtype Signed-off-by: Jon Swenson <jmswen@gmail.com> * sdpa works * comment todo small * fix model loading Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * revert * nits * small fix for TP on 1 node * Read new params from config * Add <|eom|> * lol don't know how this got here * adding fp8 * Save processor, fix chat template * style * Add boi/eoi tokens We don't use them. * fixes for now flex seems to work :) * updates * nits * updates * missking keys * add context parallel * update * update * fix * nits * add worldsize and make eager attn work for vision * Ignore new key present in base models * add tp_plan * fix nope Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * minor fix Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * Clean up Llama4 vision model * current updates * add support for `attn_temperature_tuning` * add floor scale * add missing attn scales * push what works, dirty trick for the device synch * oups * Fix pad_token_id See https://huggingface.co/ll-re/Llama-4-Scout-17B-16E/discussions/2/files Confirmed in the original codebase. * fix causallml loading * rm * fix tied-weights * fix sdpa * push current version * should work with both short and long * add compressed_tensos & fix fbgemm tp * Fix flex impl * style * chunking * try to revert the potentially breaking change * fix auto factory * fix shapes in general * rm processing * commit cache utils cleanup * Fix context length * fix * allocate * update tp_plan * fix SDPA! * Add support for sparse `Llama4TextMoe` layer from the kernel hub * cleanup * better merge * update * still broken fixing now * nits * revert print * Write max_position_embeddings and max_model_length * Update modeling_llama4.py * Save attention_chunk_size * Sync eos terminators * Read initializer_range * style * remove `dict` * fix * eager should use `chunked_attention_mask` * revert * fixup * fix config * Revert "Merge pull request #36 from huggingface/sparse-llama4-moe" This reverts commitccda19f050
, reversing changes made toa515579aed
. * Fix typo and remove warning with compiled flex and chunked prefill * Fix MoE vs FF (#41) * fix * Use correct no_rope_layers if provided one is empty list * update tests * fix * skipping some tests * fix fp8 loading Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * fix text geneartion pipeline Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * eager needs 4D mask * fix * Some cleanup * fix * update * fix * replace correctly module * patch * modulelist * update * update * clean up * Don't move to `cuda:0` in distributed mode * restrict to compressed tensors for now * rm print * Docs! * Fixes * Update docs/source/en/model_doc/llama4.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Fixes * cuda graph fix * revert some stuff * fixup * styling * Update src/transformers/models/llama4/modeling_llama4.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fixup * commit licence, cleanup here and there and style * more styling changes * fix dummies * fix and clean docstrings * remove comment * remove warning * Only fast image processor is supported * nit * trigger CI * fix issue with flex encoder * fix dynamic cache * Code quality * Code quality * fix more tests for now * Code quality * Code quality * Nuke bunch of failing stuff * Code quality * Code quality * cleanup removal of slow image processor * ruff fix fast image processor * fix * fix styling * Docs * Repo consistency * Repo consistency * fix sliding window issue * separate llama cache * styling * Repo consistency * Repo consistency * push waht works * L4 Repo consistency * Docs * fix last last alst alst alst alstsaltlsltlaslt --------- Signed-off-by: Jon Swenson <jmswen@gmail.com> Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> Co-authored-by: yonigozlan <yoni.gozlan10@gmail.com> Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com> Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com> Co-authored-by: Keyun Tong <tongkeyun@gmail.com> Co-authored-by: Zijing Liu <liuzijing2014@users.noreply.github.com> Co-authored-by: Lu Fang <fanglu@fb.com> Co-authored-by: Zijing Liu <liuzijing2014@gmail.com> Co-authored-by: Jon Swenson <jmswen@gmail.com> Co-authored-by: jmswen <jmswen@users.noreply.github.com> Co-authored-by: MekkCyber <mekk.cyber@gmail.com> Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com> Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com> Co-authored-by: Yong Hoon Shin <yhshin@meta.com> Co-authored-by: Marc Sun <marc@huggingface.co> Co-authored-by: drisspg <drisspguessous@gmail.com> Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com> Co-authored-by: Daniël de Kok <me@danieldk.eu> Co-authored-by: Lysandre <hi@lysand.re> Co-authored-by: Ye (Charlotte) Qi <ye.charlotte.qi@gmail.com> Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
479 lines
18 KiB
Python
479 lines
18 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import os
|
|
import re
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import direct_transformers_import
|
|
|
|
|
|
# All paths are set with the intent you should run this script from the root of the repo with the command
|
|
# python utils/check_config_docstrings.py
|
|
PATH_TO_TRANSFORMERS = "src/transformers"
|
|
|
|
|
|
# This is to make sure the transformers module imported is the one in the repo.
|
|
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
|
|
|
|
CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING
|
|
|
|
SPECIAL_CASES_TO_ALLOW = {
|
|
# 'max_position_embeddings' is not used in modeling file, but needed for eval frameworks like Huggingface's lighteval (https://github.com/huggingface/lighteval/blob/af24080ea4f16eaf1683e353042a2dfc9099f038/src/lighteval/models/base_model.py#L264).
|
|
# periods and offsets are not used in modeling file, but used in the configuration file to define `layers_block_type` and `layers_num_experts`.
|
|
"BambaConfig": [
|
|
"attn_layer_indices",
|
|
],
|
|
"JambaConfig": [
|
|
"max_position_embeddings",
|
|
"attn_layer_offset",
|
|
"attn_layer_period",
|
|
"expert_layer_offset",
|
|
"expert_layer_period",
|
|
],
|
|
"Qwen2Config": ["use_sliding_window"],
|
|
"Qwen2MoeConfig": ["use_sliding_window"],
|
|
"Qwen2VLConfig": ["use_sliding_window"],
|
|
# `cache_implementation` should be in the default generation config, but we don't yet support per-model
|
|
# generation configs (TODO joao)
|
|
"Gemma2Config": ["tie_word_embeddings", "cache_implementation"],
|
|
"Cohere2Config": ["cache_implementation"],
|
|
# Dropout with this value was declared but never used
|
|
"Phi3Config": ["embd_pdrop"],
|
|
# used to compute the property `self.chunk_length`
|
|
"EncodecConfig": ["overlap"],
|
|
# used to compute the property `self.layers_block_type`
|
|
"RecurrentGemmaConfig": ["block_types"],
|
|
# used as in the config to define `intermediate_size`
|
|
"MambaConfig": ["expand"],
|
|
# used as in the config to define `intermediate_size`
|
|
"FalconMambaConfig": ["expand"],
|
|
# used as `self.bert_model = BertModel(config, ...)`
|
|
"DPRConfig": True,
|
|
"FuyuConfig": True,
|
|
# not used in modeling files, but it's an important information
|
|
"FSMTConfig": ["langs"],
|
|
# used internally in the configuration class file
|
|
"GPTNeoConfig": ["attention_types"],
|
|
# used internally in the configuration class file
|
|
"EsmConfig": ["is_folding_model"],
|
|
# used during training (despite we don't have training script for these models yet)
|
|
"Mask2FormerConfig": ["ignore_value"],
|
|
# `ignore_value` used during training (despite we don't have training script for these models yet)
|
|
# `norm` used in conversion script (despite not using in the modeling file)
|
|
"OneFormerConfig": ["ignore_value", "norm"],
|
|
# used internally in the configuration class file
|
|
"T5Config": ["feed_forward_proj"],
|
|
# used internally in the configuration class file
|
|
# `tokenizer_class` get default value `T5Tokenizer` intentionally
|
|
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
|
|
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
|
|
# used internally in the configuration class file
|
|
"LongT5Config": ["feed_forward_proj"],
|
|
# used internally in the configuration class file
|
|
"Pop2PianoConfig": ["feed_forward_proj"],
|
|
# used internally in the configuration class file
|
|
"SwitchTransformersConfig": ["feed_forward_proj"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"BioGptConfig": ["layer_norm_eps"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"GLPNConfig": ["layer_norm_eps"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"SegformerConfig": ["layer_norm_eps"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"CvtConfig": ["layer_norm_eps"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"PerceiverConfig": ["layer_norm_eps"],
|
|
# used internally to calculate the feature size
|
|
"InformerConfig": ["num_static_real_features", "num_time_features"],
|
|
# used internally to calculate the feature size
|
|
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
|
|
# used internally to calculate the feature size
|
|
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
|
|
# used internally to calculate `mlp_dim`
|
|
"SamVisionConfig": ["mlp_ratio"],
|
|
# For (head) training, but so far not implemented
|
|
"ClapAudioConfig": ["num_classes"],
|
|
# Not used, but providing useful information to users
|
|
"SpeechT5HifiGanConfig": ["sampling_rate"],
|
|
# used internally in the configuration class file
|
|
"UdopConfig": ["feed_forward_proj"],
|
|
# Actually used in the config or generation config, in that case necessary for the sub-components generation
|
|
"SeamlessM4TConfig": [
|
|
"max_new_tokens",
|
|
"t2u_max_new_tokens",
|
|
"t2u_decoder_attention_heads",
|
|
"t2u_decoder_ffn_dim",
|
|
"t2u_decoder_layers",
|
|
"t2u_encoder_attention_heads",
|
|
"t2u_encoder_ffn_dim",
|
|
"t2u_encoder_layers",
|
|
"t2u_max_position_embeddings",
|
|
],
|
|
# Actually used in the config or generation config, in that case necessary for the sub-components generation
|
|
"SeamlessM4Tv2Config": [
|
|
"max_new_tokens",
|
|
"t2u_decoder_attention_heads",
|
|
"t2u_decoder_ffn_dim",
|
|
"t2u_decoder_layers",
|
|
"t2u_encoder_attention_heads",
|
|
"t2u_encoder_ffn_dim",
|
|
"t2u_encoder_layers",
|
|
"t2u_max_position_embeddings",
|
|
"t2u_variance_pred_dropout",
|
|
"t2u_variance_predictor_embed_dim",
|
|
"t2u_variance_predictor_hidden_dim",
|
|
"t2u_variance_predictor_kernel_size",
|
|
],
|
|
"ZambaConfig": [
|
|
"tie_word_embeddings",
|
|
"attn_layer_offset",
|
|
"attn_layer_period",
|
|
],
|
|
"MllamaTextConfig": [
|
|
"initializer_range",
|
|
],
|
|
"MllamaVisionConfig": [
|
|
"initializer_range",
|
|
"supported_aspect_ratios",
|
|
],
|
|
"ConditionalDetrConfig": [
|
|
"bbox_cost",
|
|
"bbox_loss_coefficient",
|
|
"class_cost",
|
|
"cls_loss_coefficient",
|
|
"dice_loss_coefficient",
|
|
"focal_alpha",
|
|
"giou_cost",
|
|
"giou_loss_coefficient",
|
|
"mask_loss_coefficient",
|
|
],
|
|
"DabDetrConfig": [
|
|
"dilation",
|
|
"bbox_cost",
|
|
"bbox_loss_coefficient",
|
|
"class_cost",
|
|
"cls_loss_coefficient",
|
|
"focal_alpha",
|
|
"giou_cost",
|
|
"giou_loss_coefficient",
|
|
],
|
|
"DetrConfig": [
|
|
"bbox_cost",
|
|
"bbox_loss_coefficient",
|
|
"class_cost",
|
|
"dice_loss_coefficient",
|
|
"eos_coefficient",
|
|
"giou_cost",
|
|
"giou_loss_coefficient",
|
|
"mask_loss_coefficient",
|
|
],
|
|
"GroundingDinoConfig": [
|
|
"bbox_cost",
|
|
"bbox_loss_coefficient",
|
|
"class_cost",
|
|
"focal_alpha",
|
|
"giou_cost",
|
|
"giou_loss_coefficient",
|
|
],
|
|
"RTDetrConfig": [
|
|
"eos_coefficient",
|
|
"focal_loss_alpha",
|
|
"focal_loss_gamma",
|
|
"matcher_alpha",
|
|
"matcher_bbox_cost",
|
|
"matcher_class_cost",
|
|
"matcher_gamma",
|
|
"matcher_giou_cost",
|
|
"use_focal_loss",
|
|
"weight_loss_bbox",
|
|
"weight_loss_giou",
|
|
"weight_loss_vfl",
|
|
],
|
|
"RTDetrV2Config": [
|
|
"eos_coefficient",
|
|
"focal_loss_alpha",
|
|
"focal_loss_gamma",
|
|
"matcher_alpha",
|
|
"matcher_bbox_cost",
|
|
"matcher_class_cost",
|
|
"matcher_gamma",
|
|
"matcher_giou_cost",
|
|
"use_focal_loss",
|
|
"weight_loss_bbox",
|
|
"weight_loss_giou",
|
|
"weight_loss_vfl",
|
|
],
|
|
"YolosConfig": [
|
|
"bbox_cost",
|
|
"bbox_loss_coefficient",
|
|
"class_cost",
|
|
"eos_coefficient",
|
|
"giou_cost",
|
|
"giou_loss_coefficient",
|
|
],
|
|
"GPTNeoXConfig": ["rotary_emb_base"],
|
|
"Gemma3Config": ["boi_token_index", "eoi_token_index"],
|
|
"Gemma3TextConfig": ["cache_implementation", "tie_word_embeddings"],
|
|
"ShieldGemma2Config": [
|
|
"boi_token_index",
|
|
"eoi_token_index",
|
|
"initializer_range",
|
|
"mm_tokens_per_image",
|
|
"text_config",
|
|
"vision_config",
|
|
],
|
|
"Llama4Config": ["boi_token_index", "eoi_token_index"],
|
|
"Llama4TextConfig": [
|
|
"interleave_moe_layer_step",
|
|
"no_rope_layer_interval",
|
|
"no_rope_layers",
|
|
"output_router_logits",
|
|
"router_aux_loss_coef",
|
|
"router_jitter_noise",
|
|
],
|
|
"Llama4VisionConfig": ["multi_modal_projector_bias", "norm_eps"],
|
|
}
|
|
|
|
|
|
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
|
|
SPECIAL_CASES_TO_ALLOW.update(
|
|
{
|
|
"CLIPSegConfig": True,
|
|
"DeformableDetrConfig": True,
|
|
"DinatConfig": True,
|
|
"DonutSwinConfig": True,
|
|
"FastSpeech2ConformerConfig": True,
|
|
"FSMTConfig": True,
|
|
"LayoutLMv2Config": True,
|
|
"MaskFormerSwinConfig": True,
|
|
"MT5Config": True,
|
|
# For backward compatibility with trust remote code models
|
|
"MptConfig": True,
|
|
"MptAttentionConfig": True,
|
|
"OneFormerConfig": True,
|
|
"PerceiverConfig": True,
|
|
"RagConfig": True,
|
|
"SpeechT5Config": True,
|
|
"SwinConfig": True,
|
|
"Swin2SRConfig": True,
|
|
"Swinv2Config": True,
|
|
"SwitchTransformersConfig": True,
|
|
"TableTransformerConfig": True,
|
|
"TapasConfig": True,
|
|
"UniSpeechConfig": True,
|
|
"UniSpeechSatConfig": True,
|
|
"WavLMConfig": True,
|
|
"WhisperConfig": True,
|
|
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
|
|
"JukeboxPriorConfig": True,
|
|
# TODO: @Younes (for `is_decoder`)
|
|
"Pix2StructTextConfig": True,
|
|
"IdeficsConfig": True,
|
|
"IdeficsVisionConfig": True,
|
|
"IdeficsPerceiverConfig": True,
|
|
}
|
|
)
|
|
|
|
|
|
def check_attribute_being_used(config_class, attributes, default_value, source_strings):
|
|
"""Check if any name in `attributes` is used in one of the strings in `source_strings`
|
|
|
|
Args:
|
|
config_class (`type`):
|
|
The configuration class for which the arguments in its `__init__` will be checked.
|
|
attributes (`List[str]`):
|
|
The name of an argument (or attribute) and its variant names if any.
|
|
default_value (`Any`):
|
|
A default value for the attribute in `attributes` assigned in the `__init__` of `config_class`.
|
|
source_strings (`List[str]`):
|
|
The python source code strings in the same modeling directory where `config_class` is defined. The file
|
|
containing the definition of `config_class` should be excluded.
|
|
"""
|
|
attribute_used = False
|
|
for attribute in attributes:
|
|
for modeling_source in source_strings:
|
|
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
|
|
if (
|
|
f"config.{attribute}" in modeling_source
|
|
or f'getattr(config, "{attribute}"' in modeling_source
|
|
or f'getattr(self.config, "{attribute}"' in modeling_source
|
|
or (
|
|
"TextConfig" in config_class.__name__
|
|
and f"config.get_text_config().{attribute}" in modeling_source
|
|
)
|
|
):
|
|
attribute_used = True
|
|
# Deal with multi-line cases
|
|
elif (
|
|
re.search(
|
|
rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"',
|
|
modeling_source,
|
|
)
|
|
is not None
|
|
):
|
|
attribute_used = True
|
|
# `SequenceSummary` is called with `SequenceSummary(config)`
|
|
elif attribute in [
|
|
"summary_type",
|
|
"summary_use_proj",
|
|
"summary_activation",
|
|
"summary_last_dropout",
|
|
"summary_proj_to_labels",
|
|
"summary_first_dropout",
|
|
]:
|
|
if "SequenceSummary" in modeling_source:
|
|
attribute_used = True
|
|
if attribute_used:
|
|
break
|
|
if attribute_used:
|
|
break
|
|
|
|
# common and important attributes, even if they do not always appear in the modeling files
|
|
attributes_to_allow = [
|
|
"bos_index",
|
|
"eos_index",
|
|
"pad_index",
|
|
"unk_index",
|
|
"mask_index",
|
|
"image_token_index", # for VLMs
|
|
"video_token_index",
|
|
"image_seq_length",
|
|
"video_seq_length",
|
|
"image_size",
|
|
"use_cache",
|
|
"out_features",
|
|
"out_indices",
|
|
"sampling_rate",
|
|
# backbone related arguments passed to load_backbone
|
|
"use_pretrained_backbone",
|
|
"backbone",
|
|
"backbone_config",
|
|
"use_timm_backbone",
|
|
"backbone_kwargs",
|
|
# rope attributes may not appear directly in the modeling but are used
|
|
"rope_theta",
|
|
"partial_rotary_factor",
|
|
"pretraining_tp",
|
|
"boi_token_index",
|
|
"eoi_token_index",
|
|
]
|
|
attributes_used_in_generation = ["encoder_no_repeat_ngram_size"]
|
|
|
|
# Special cases to be allowed
|
|
case_allowed = True
|
|
if not attribute_used:
|
|
case_allowed = False
|
|
for attribute in attributes:
|
|
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
|
|
if attribute in ["is_encoder_decoder"] and default_value is True:
|
|
case_allowed = True
|
|
elif attribute in ["tie_word_embeddings"] and default_value is False:
|
|
case_allowed = True
|
|
|
|
# Allow cases without checking the default value in the configuration class
|
|
elif attribute in attributes_to_allow + attributes_used_in_generation:
|
|
case_allowed = True
|
|
elif attribute.endswith("_token_id"):
|
|
case_allowed = True
|
|
|
|
# configuration class specific cases
|
|
if not case_allowed:
|
|
allowed_cases = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [])
|
|
case_allowed = allowed_cases is True or attribute in allowed_cases
|
|
|
|
return attribute_used or case_allowed
|
|
|
|
|
|
def check_config_attributes_being_used(config_class):
|
|
"""Check the arguments in `__init__` of `config_class` are used in the modeling files in the same directory
|
|
|
|
Args:
|
|
config_class (`type`):
|
|
The configuration class for which the arguments in its `__init__` will be checked.
|
|
"""
|
|
# Get the parameters in `__init__` of the configuration class, and the default values if any
|
|
signature = dict(inspect.signature(config_class.__init__).parameters)
|
|
parameter_names = [x for x in list(signature.keys()) if x not in ["self", "kwargs"]]
|
|
parameter_defaults = [signature[param].default for param in parameter_names]
|
|
|
|
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
|
|
# as one variant is used, the test should pass
|
|
reversed_attribute_map = {}
|
|
if len(config_class.attribute_map) > 0:
|
|
reversed_attribute_map = {v: k for k, v in config_class.attribute_map.items()}
|
|
|
|
# Get the path to modeling source files
|
|
config_source_file = inspect.getsourcefile(config_class)
|
|
model_dir = os.path.dirname(config_source_file)
|
|
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
|
|
modeling_paths = [os.path.join(model_dir, fn) for fn in os.listdir(model_dir) if fn.startswith("modeling_")]
|
|
|
|
# Get the source code strings
|
|
modeling_sources = []
|
|
for path in modeling_paths:
|
|
if os.path.isfile(path):
|
|
with open(path, encoding="utf8") as fp:
|
|
modeling_sources.append(fp.read())
|
|
|
|
unused_attributes = []
|
|
for config_param, default_value in zip(parameter_names, parameter_defaults):
|
|
# `attributes` here is all the variant names for `config_param`
|
|
attributes = [config_param]
|
|
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
|
|
# corresponding modeling files. As long as one of them appears, it is fine.
|
|
if config_param in reversed_attribute_map:
|
|
attributes.append(reversed_attribute_map[config_param])
|
|
|
|
if not check_attribute_being_used(config_class, attributes, default_value, modeling_sources):
|
|
unused_attributes.append(attributes[0])
|
|
|
|
return sorted(unused_attributes)
|
|
|
|
|
|
def check_config_attributes():
|
|
"""Check the arguments in `__init__` of all configuration classes are used in python files"""
|
|
configs_with_unused_attributes = {}
|
|
for _config_class in list(CONFIG_MAPPING.values()):
|
|
# Skip deprecated models
|
|
if "models.deprecated" in _config_class.__module__:
|
|
continue
|
|
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
|
|
config_classes_in_module = [
|
|
cls
|
|
for name, cls in inspect.getmembers(
|
|
inspect.getmodule(_config_class),
|
|
lambda x: inspect.isclass(x)
|
|
and issubclass(x, PretrainedConfig)
|
|
and inspect.getmodule(x) == inspect.getmodule(_config_class),
|
|
)
|
|
]
|
|
for config_class in config_classes_in_module:
|
|
unused_attributes = check_config_attributes_being_used(config_class)
|
|
if len(unused_attributes) > 0:
|
|
configs_with_unused_attributes[config_class.__name__] = unused_attributes
|
|
|
|
if len(configs_with_unused_attributes) > 0:
|
|
error = "The following configuration classes contain unused attributes in the corresponding modeling files:\n"
|
|
for name, attributes in configs_with_unused_attributes.items():
|
|
error += f"{name}: {attributes}\n"
|
|
|
|
raise ValueError(error)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
check_config_attributes()
|