mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* remove one of the last deps * update fast image processor after refactor * styling * more quality of life improvements * nit * update * cleanups * some cleanups * vllm updates * update fake image token * [convert] Fix typo * [convert] Strip extraneous bytes from shards * [convert] Minor fixes * [convert] Use num_experts * multi-image fixes in modeling + processor * fixup size * 128 experts * Use default rope * Unfuse mlp * simplify a lot inputs embeds merging * remove .item() 👀 * fix from review * Address feedback * Use None "default" for rope_scaling. Add eot. * set seed * return aspect ratios and bug fixes * Moe 128 rebased (#8) * 128 experts * Use default rope * Unfuse mlp * Address feedback * Use None "default" for rope_scaling. Add eot. * Meta/llama quant compat (#7) * add quant compatible model & conversion code for llama4 * fix a few issues * fix a few issues * minor type mapping fix --------- Co-authored-by: Lu Fang <fanglu@fb.com> * use a new config parameter to determine which model definition to use for MoE --------- Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: Lu Fang <fanglu@fb.com> * un-comment write_tokenizer from converting script * remove un-used imports * [llama4] Pop aspect_ratios from image processor output in Llama4Processor Signed-off-by: Jon Swenson <jmswen@gmail.com> * Fix parameter_count name * Update src/transformers/models/llama4/configuration_llama4.py * nit * Add changes for no_rope, moe_layers, chunked attention. Just need to test all * Update src/transformers/models/llama4/image_processing_llama4_fast.py * nit * fix post merge with main * support flex attention * fixes * fix * add layer * small updates * rebase and delete llm_compressor * nit * [llama4/mm] Add back <|image|> token that delimits global tile * [llama4/mm] Fix Llama 4 image processing unit tests * add explicit dtype Signed-off-by: Jon Swenson <jmswen@gmail.com> * sdpa works * comment todo small * fix model loading Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * revert * nits * small fix for TP on 1 node * Read new params from config * Add <|eom|> * lol don't know how this got here * adding fp8 * Save processor, fix chat template * style * Add boi/eoi tokens We don't use them. * fixes for now flex seems to work :) * updates * nits * updates * missking keys * add context parallel * update * update * fix * nits * add worldsize and make eager attn work for vision * Ignore new key present in base models * add tp_plan * fix nope Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * minor fix Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * Clean up Llama4 vision model * current updates * add support for `attn_temperature_tuning` * add floor scale * add missing attn scales * push what works, dirty trick for the device synch * oups * Fix pad_token_id See https://huggingface.co/ll-re/Llama-4-Scout-17B-16E/discussions/2/files Confirmed in the original codebase. * fix causallml loading * rm * fix tied-weights * fix sdpa * push current version * should work with both short and long * add compressed_tensos & fix fbgemm tp * Fix flex impl * style * chunking * try to revert the potentially breaking change * fix auto factory * fix shapes in general * rm processing * commit cache utils cleanup * Fix context length * fix * allocate * update tp_plan * fix SDPA! * Add support for sparse `Llama4TextMoe` layer from the kernel hub * cleanup * better merge * update * still broken fixing now * nits * revert print * Write max_position_embeddings and max_model_length * Update modeling_llama4.py * Save attention_chunk_size * Sync eos terminators * Read initializer_range * style * remove `dict` * fix * eager should use `chunked_attention_mask` * revert * fixup * fix config * Revert "Merge pull request #36 from huggingface/sparse-llama4-moe" This reverts commitccda19f050
, reversing changes made toa515579aed
. * Fix typo and remove warning with compiled flex and chunked prefill * Fix MoE vs FF (#41) * fix * Use correct no_rope_layers if provided one is empty list * update tests * fix * skipping some tests * fix fp8 loading Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * fix text geneartion pipeline Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> * eager needs 4D mask * fix * Some cleanup * fix * update * fix * replace correctly module * patch * modulelist * update * update * clean up * Don't move to `cuda:0` in distributed mode * restrict to compressed tensors for now * rm print * Docs! * Fixes * Update docs/source/en/model_doc/llama4.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Fixes * cuda graph fix * revert some stuff * fixup * styling * Update src/transformers/models/llama4/modeling_llama4.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fixup * commit licence, cleanup here and there and style * more styling changes * fix dummies * fix and clean docstrings * remove comment * remove warning * Only fast image processor is supported * nit * trigger CI * fix issue with flex encoder * fix dynamic cache * Code quality * Code quality * fix more tests for now * Code quality * Code quality * Nuke bunch of failing stuff * Code quality * Code quality * cleanup removal of slow image processor * ruff fix fast image processor * fix * fix styling * Docs * Repo consistency * Repo consistency * fix sliding window issue * separate llama cache * styling * Repo consistency * Repo consistency * push waht works * L4 Repo consistency * Docs * fix last last alst alst alst alstsaltlsltlaslt --------- Signed-off-by: Jon Swenson <jmswen@gmail.com> Signed-off-by: Zijing Liu <liuzijing2014@gmail.com> Co-authored-by: yonigozlan <yoni.gozlan10@gmail.com> Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com> Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com> Co-authored-by: Keyun Tong <tongkeyun@gmail.com> Co-authored-by: Zijing Liu <liuzijing2014@users.noreply.github.com> Co-authored-by: Lu Fang <fanglu@fb.com> Co-authored-by: Zijing Liu <liuzijing2014@gmail.com> Co-authored-by: Jon Swenson <jmswen@gmail.com> Co-authored-by: jmswen <jmswen@users.noreply.github.com> Co-authored-by: MekkCyber <mekk.cyber@gmail.com> Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com> Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com> Co-authored-by: Yong Hoon Shin <yhshin@meta.com> Co-authored-by: Marc Sun <marc@huggingface.co> Co-authored-by: drisspg <drisspguessous@gmail.com> Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com> Co-authored-by: Daniël de Kok <me@danieldk.eu> Co-authored-by: Lysandre <hi@lysand.re> Co-authored-by: Ye (Charlotte) Qi <ye.charlotte.qi@gmail.com> Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
1904 lines
84 KiB
Python
1904 lines
84 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The LLAMA4 and HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import Callable, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
|
|
from transformers.models.llama4.configuration_llama4 import Llama4VisionConfig
|
|
|
|
from ...activations import ACT2FN
|
|
from ...cache_utils import Cache, DynamicCache
|
|
from ...generation import GenerationMixin
|
|
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
|
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
|
from ...modeling_outputs import (
|
|
BaseModelOutput,
|
|
BaseModelOutputWithPast,
|
|
CausalLMOutputWithPast,
|
|
ModelOutput,
|
|
)
|
|
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
from ...processing_utils import Unpack
|
|
from ...utils import (
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
is_torch_flex_attn_available,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from .configuration_llama4 import Llama4Config, Llama4TextConfig
|
|
|
|
|
|
if is_torch_flex_attn_available():
|
|
from torch.nn.attention.flex_attention import BlockMask
|
|
|
|
from ...integrations.flex_attention import make_flex_block_causal_mask
|
|
|
|
logger = logging.get_logger(__name__)
|
|
_CHECKPOINT_FOR_DOC = "meta-ai/Llama-4-17B"
|
|
_CONFIG_FOR_DOC = "Llama4Config"
|
|
|
|
|
|
class Llama4TextExperts(nn.Module):
|
|
def __init__(self, config: Llama4Config):
|
|
super().__init__()
|
|
self.num_experts = config.num_local_experts
|
|
self.intermediate_size = config.intermediate_size
|
|
self.hidden_size = config.hidden_size
|
|
self.expert_dim = self.intermediate_size
|
|
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
|
|
self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size)))
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
This should really not be run on a single machine, as we are reaching compute bound:
|
|
- the inputs are expected to be "sorted" per expert already.
|
|
- the weights are viewed with another dim, to match num_expert, 1, shape * num_tokens, shape
|
|
|
|
Args:
|
|
hidden_states (torch.Tensor): (batch_size * token_num, hidden_size)
|
|
selected_experts (torch.Tensor): (batch_size * token_num, top_k)
|
|
routing_weights (torch.Tensor): (batch_size * token_num, top_k)
|
|
Returns:
|
|
torch.Tensor
|
|
"""
|
|
hidden_states = hidden_states.view(self.num_experts, -1, self.hidden_size)
|
|
gate_up = torch.bmm(hidden_states, self.gate_up_proj)
|
|
gate, up = gate_up.chunk(2, dim=-1) # not supported for DTensors
|
|
next_states = torch.bmm((up * self.act_fn(gate)), self.down_proj)
|
|
next_states = next_states.view(-1, self.hidden_size)
|
|
return next_states
|
|
|
|
|
|
# Phi3MLP
|
|
class Llama4TextMLP(nn.Module):
|
|
def __init__(self, config, intermediate_size=None):
|
|
super().__init__()
|
|
|
|
if intermediate_size is None:
|
|
intermediate_size = config.intermediate_size
|
|
|
|
self.config = config
|
|
self.gate_proj = nn.Linear(config.hidden_size, intermediate_size, bias=False)
|
|
self.up_proj = nn.Linear(config.hidden_size, intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(intermediate_size, config.hidden_size, bias=False)
|
|
self.activation_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, x):
|
|
down_proj = self.activation_fn(self.gate_proj(x)) * self.up_proj(x)
|
|
return self.down_proj(down_proj)
|
|
|
|
|
|
class Llama4TextL2Norm(torch.nn.Module):
|
|
def __init__(self, dim: int = None, eps: float = 1e-6):
|
|
super().__init__()
|
|
self.eps = eps
|
|
|
|
def _norm(self, x):
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x):
|
|
return self._norm(x.float()).type_as(x)
|
|
|
|
def extra_repr(self):
|
|
return f"eps={self.eps}"
|
|
|
|
|
|
class Llama4TextRMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-5):
|
|
"""
|
|
Llama4RMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
|
|
def _norm(self, x):
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x):
|
|
output = self._norm(x.float()).type_as(x)
|
|
return output * self.weight
|
|
|
|
def extra_repr(self):
|
|
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
|
|
|
|
|
class Llama4TextMoe(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.top_k = config.num_experts_per_tok
|
|
self.hidden_dim = config.hidden_size
|
|
self.num_experts = config.num_local_experts
|
|
self.experts = Llama4TextExperts(config)
|
|
self.router = nn.Linear(config.hidden_size, config.num_local_experts, bias=False)
|
|
self.shared_expert = Llama4TextMLP(config)
|
|
|
|
def forward(self, hidden_states):
|
|
batch, seq_len, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, self.hidden_dim)
|
|
router_logits = self.router(hidden_states).transpose(0, 1)
|
|
tokens_per_expert = batch * seq_len
|
|
|
|
router_top_value, router_indices = torch.topk(router_logits.transpose(0, 1), self.top_k, dim=1)
|
|
router_scores = (
|
|
torch.full_like(router_logits.transpose(0, 1), float("-inf"))
|
|
.scatter_(1, router_indices, router_top_value)
|
|
.transpose(0, 1)
|
|
)
|
|
# We do this to make sure we have -inf for non topK tokens before going through the !
|
|
# Here we are just creating a tensor to index each and every single one of the hidden states. Let s maybe register a buffer for this!
|
|
router_indices = (
|
|
torch.arange(tokens_per_expert, device=hidden_states.device).view(1, -1).expand(router_scores.size(0), -1)
|
|
)
|
|
router_scores = torch.sigmoid(router_scores.float()).to(hidden_states.dtype)
|
|
|
|
router_indices = router_indices.reshape(-1, 1).expand(-1, hidden_dim)
|
|
routed_in = torch.gather(
|
|
input=hidden_states,
|
|
dim=0,
|
|
index=router_indices,
|
|
).to(hidden_states.device)
|
|
# we gather inputs corresponding to each expert based on the router indices
|
|
routed_in = routed_in * router_scores.reshape(-1, 1)
|
|
routed_out = self.experts(routed_in)
|
|
out = self.shared_expert(hidden_states)
|
|
# now that we finished expert computation -> we scatter add because we gathered previously
|
|
# we have to do this because we used all experts on all tokens. This is faster than the for loop, tho you are compute bound
|
|
# this scales a lot better if you do EP!
|
|
out.scatter_add_(dim=0, index=router_indices, src=routed_out.view(-1, hidden_dim))
|
|
return out, router_scores
|
|
|
|
|
|
class Llama4TextRotaryEmbedding(nn.Module):
|
|
def __init__(self, config: Llama4TextConfig, device=None):
|
|
super().__init__()
|
|
# BC: "rope_type" was originally "type"
|
|
self.rope_type = "llama3" if config.rope_scaling is not None else "default"
|
|
|
|
self.max_seq_len_cached = config.max_position_embeddings
|
|
self.original_max_seq_len = config.max_position_embeddings
|
|
|
|
self.config = config
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
self.original_inv_freq = self.inv_freq
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device):
|
|
"""
|
|
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
|
1 - growing beyond the cached sequence length (allow scaling)
|
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
|
"""
|
|
seq_len = torch.max(position_ids) + 1
|
|
if seq_len > self.max_seq_len_cached: # growth
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
|
self.max_seq_len_cached = seq_len
|
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
|
# This .to() is needed if the model has been moved to a device after being initialized (because
|
|
# the buffer is automatically moved, but not the original copy)
|
|
self.original_inv_freq = self.original_inv_freq.to(device)
|
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
|
self.max_seq_len_cached = self.original_max_seq_len
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x, position_ids):
|
|
if "dynamic" in self.rope_type:
|
|
self._dynamic_frequency_update(position_ids, device=x.device)
|
|
# Core RoPE block
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.to(x.device) @ position_ids_expanded).transpose(1, 2)
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # Convert to complex representation
|
|
|
|
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
|
freqs_cis = freqs_cis * self.attention_scaling
|
|
return freqs_cis
|
|
|
|
|
|
def apply_rotary_emb(
|
|
xq: torch.Tensor,
|
|
xk: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
|
xq_out = torch.view_as_real(xq_ * freqs_cis[:, :, None, :]).flatten(3)
|
|
xk_out = torch.view_as_real(xk_ * freqs_cis[:, :, None, :]).flatten(3)
|
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
"""
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
if n_rep == 1:
|
|
return hidden_states
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
|
|
|
|
def eager_attention_forward(
|
|
module: nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor],
|
|
scaling: float,
|
|
dropout: float = 0.0,
|
|
**kwargs,
|
|
):
|
|
key_states = repeat_kv(key, module.num_key_value_groups)
|
|
value_states = repeat_kv(value, module.num_key_value_groups)
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) / math.sqrt(module.head_dim)
|
|
if attention_mask is not None:
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
attn_weights = attn_weights + causal_mask
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1).to(query.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
return attn_output, attn_weights
|
|
|
|
|
|
class Llama4TextAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config: Llama4TextConfig, layer_idx):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
|
self.num_key_value_heads = config.num_key_value_heads
|
|
self.scaling = self.head_dim**-0.5
|
|
self.attn_scale = config.attn_scale
|
|
self.floor_scale = config.floor_scale
|
|
self.attn_temperature_tuning = config.attn_temperature_tuning
|
|
self.attention_dropout = config.attention_dropout
|
|
self.is_causal = True
|
|
self.use_rope = int((layer_idx + 1) % 4 != 0) # rope unused for dense layers
|
|
self.q_proj = nn.Linear(
|
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
|
)
|
|
self.k_proj = nn.Linear(
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
|
)
|
|
self.v_proj = nn.Linear(
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
|
)
|
|
self.o_proj = nn.Linear(
|
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
|
)
|
|
if self.config.use_qk_norm and self.use_rope:
|
|
self.qk_norm = Llama4TextL2Norm()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
|
attention_mask: Optional[torch.Tensor],
|
|
past_key_value: Optional[Cache] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs: Unpack[FlashAttentionKwargs],
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
input_shape = hidden_states.shape[:-1]
|
|
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape)
|
|
key_states = self.k_proj(hidden_states).view(*input_shape, -1, self.head_dim)
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
|
|
if self.use_rope: # the 16E model skips rope for long context on certain layers
|
|
query_states, key_states = apply_rotary_emb(
|
|
query_states, key_states, position_embeddings.to(query_states.device)
|
|
)
|
|
|
|
if hasattr(self, "qk_norm"): # the 128E model does not use qk_norm
|
|
query_states = self.qk_norm(query_states)
|
|
key_states = self.qk_norm(key_states)
|
|
|
|
# Use temperature tuning from https://arxiv.org/abs/2501.19399) to NoROPE layers
|
|
if self.attn_temperature_tuning and not self.use_rope:
|
|
attn_scales = (
|
|
torch.log(torch.floor((cache_position.float() + 1.0) / self.floor_scale) + 1.0) * self.attn_scale + 1.0
|
|
)
|
|
attn_scales = attn_scales.view((*input_shape, 1, 1))
|
|
query_states = (query_states * attn_scales).to(query_states.dtype)
|
|
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
|
|
if past_key_value is not None:
|
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
|
cache_kwargs = {"cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
attention_interface: Callable = eager_attention_forward
|
|
if self.config._attn_implementation != "eager":
|
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
|
logger.warning_once(
|
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
)
|
|
else:
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
attn_output, attn_weights = attention_interface(
|
|
self,
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
dropout=0.0 if not self.training else self.attention_dropout,
|
|
scaling=self.scaling,
|
|
**kwargs,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
return attn_output, attn_weights
|
|
|
|
|
|
class Llama4TextDecoderLayer(nn.Module):
|
|
def __init__(self, config, layer_idx):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.self_attn = Llama4TextAttention(config, layer_idx)
|
|
self.use_chunked_attention = int((layer_idx + 1) % 4 != 0) # <=> use rope
|
|
self.is_moe_layer = layer_idx in config.moe_layers
|
|
if self.is_moe_layer: # the 128E model interleaves dense / sparse
|
|
self.feed_forward = Llama4TextMoe(config)
|
|
else:
|
|
self.feed_forward = Llama4TextMLP(config, intermediate_size=config.intermediate_size_mlp)
|
|
|
|
self.input_layernorm = Llama4TextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = Llama4TextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.layer_idx = layer_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
chunk_causal_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
output_router_logits: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
|
**kwargs: Unpack[FlashAttentionKwargs],
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
# use local attention mask for ROPE layers
|
|
if self.use_chunked_attention and chunk_causal_mask is not None:
|
|
attention_mask = chunk_causal_mask
|
|
|
|
# Self Attention
|
|
attention_states, self_attn_weights = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
position_embeddings=position_embeddings,
|
|
attention_mask=attention_mask,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
**kwargs,
|
|
)
|
|
hidden_states = residual + attention_states
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.feed_forward(hidden_states)
|
|
if self.is_moe_layer:
|
|
hidden_states, router_logits = hidden_states
|
|
else:
|
|
router_logits = None
|
|
hidden_states = residual + hidden_states.view(residual.shape)
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if output_router_logits:
|
|
outputs += (router_logits,)
|
|
|
|
return outputs
|
|
|
|
|
|
LLAMA4_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`Llama4Config`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare Llama4 Model outputting raw hidden-states without any specific head on top.",
|
|
LLAMA4_START_DOCSTRING,
|
|
)
|
|
class Llama4PreTrainedModel(PreTrainedModel):
|
|
config_class = Llama4Config
|
|
supports_gradient_checkpointing = True
|
|
_skip_keys_device_placement = ["past_key_values"]
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = True
|
|
_supports_flex_attn = True
|
|
_supports_cache_class = True
|
|
_supports_quantized_cache = True
|
|
_supports_static_cache = True
|
|
_supports_attention_backend = True
|
|
|
|
def _init_weights(self, module):
|
|
std = (
|
|
self.config.initializer_range
|
|
if hasattr(self.config, "initializer_range")
|
|
else self.config.text_config.initializer_range
|
|
)
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
LLAMA4_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance, see our
|
|
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
|
the complete sequence length.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare Llama4 Model outputting raw hidden-states without any specific head on top.",
|
|
LLAMA4_START_DOCSTRING,
|
|
)
|
|
class Llama4TextModel(Llama4PreTrainedModel):
|
|
_no_split_modules = ["Llama4TextDecoderLayer"]
|
|
base_model_prefix = "model"
|
|
config_class = Llama4TextConfig
|
|
|
|
def __init__(self, config: Llama4TextConfig):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
self.layers = nn.ModuleList(
|
|
[Llama4TextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
)
|
|
self.norm = Llama4TextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.rotary_emb = Llama4TextRotaryEmbedding(config=config)
|
|
self.gradient_checkpointing = False
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(LLAMA4_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Cache] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
|
)
|
|
use_cache = False
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids.to(self.embed_tokens.weight.device))
|
|
|
|
if use_cache and past_key_values is None:
|
|
past_key_values = DynamicCache()
|
|
|
|
if cache_position is None:
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
cache_position = torch.arange(
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
)
|
|
|
|
if position_ids is None:
|
|
position_ids = cache_position.unsqueeze(0)
|
|
|
|
causal_mask, chunk_causal_mask = self._update_causal_mask(
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
# create position embeddings to be shared across the decoder layers
|
|
freq_cis = self.rotary_emb(hidden_states, position_ids)
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
causal_mask,
|
|
chunk_causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
freq_cis,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=causal_mask,
|
|
chunk_causal_mask=chunk_causal_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=freq_cis,
|
|
**flash_attn_kwargs,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
output = BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=past_key_values if use_cache else None,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
return output if return_dict else output.to_tuple()
|
|
|
|
def _update_causal_mask(
|
|
self,
|
|
attention_mask: torch.Tensor,
|
|
input_tensor: torch.Tensor,
|
|
cache_position: torch.Tensor,
|
|
past_key_values: Cache,
|
|
output_attentions: bool = False,
|
|
chunked_attention_mask=None,
|
|
):
|
|
if self.config._attn_implementation == "flash_attention_2":
|
|
if attention_mask is not None and (attention_mask == 0.0).any():
|
|
return attention_mask, attention_mask # flash does not support chunked attn TODO support flash
|
|
return None, None
|
|
|
|
if self.config._attn_implementation not in ["sdpa", "flex_attention", "eager"]:
|
|
return None, None
|
|
|
|
sequence_length = input_tensor.shape[1]
|
|
cache_position = cache_position.to(self.device)
|
|
attention_chunk_size = self.config.attention_chunk_size
|
|
|
|
first_cache_position = cache_position[0]
|
|
last_cache_position = cache_position[-1]
|
|
|
|
# to avoid graph break, we introduce this hack
|
|
cond1 = first_cache_position >= attention_chunk_size
|
|
cond2 = (first_cache_position < attention_chunk_size) & (
|
|
first_cache_position + sequence_length > attention_chunk_size
|
|
)
|
|
|
|
key_length = torch.where(
|
|
cond1,
|
|
attention_chunk_size + sequence_length - 1,
|
|
torch.where(cond2, first_cache_position + sequence_length, attention_chunk_size),
|
|
)
|
|
|
|
if past_key_values is not None and past_key_values.is_compileable:
|
|
target_length = past_key_values.get_max_cache_shape
|
|
else:
|
|
target_length = attention_mask.shape[-1] if attention_mask is not None else sequence_length
|
|
|
|
if self.config._attn_implementation == "flex_attention":
|
|
if isinstance(attention_mask, torch.Tensor):
|
|
offsets = (first_cache_position, max(last_cache_position - key_length, 0))
|
|
chunked_attention_mask = make_flex_block_causal_mask(
|
|
attention_mask, self.config.attention_chunk_size, sequence_length, key_length, offsets=offsets
|
|
)
|
|
attention_mask = make_flex_block_causal_mask(
|
|
attention_mask,
|
|
query_length=sequence_length,
|
|
key_length=past_key_values.get_max_cache_shape(),
|
|
offsets=None if sequence_length != 1 else (first_cache_position, 0),
|
|
)
|
|
return attention_mask, chunked_attention_mask
|
|
if isinstance(attention_mask, BlockMask):
|
|
return attention_mask, chunked_attention_mask
|
|
|
|
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
|
dtype, device = input_tensor.dtype, input_tensor.device
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask,
|
|
sequence_length=sequence_length,
|
|
target_length=target_length,
|
|
dtype=dtype,
|
|
device=device,
|
|
cache_position=cache_position,
|
|
batch_size=input_tensor.shape[0],
|
|
)
|
|
if target_length > self.config.attention_chunk_size:
|
|
chunked_attention_mask = self.create_chunked_attention_mask(
|
|
self.config.attention_chunk_size,
|
|
start=first_cache_position,
|
|
end=first_cache_position + key_length,
|
|
device=device,
|
|
)
|
|
chunked_attention_mask = chunked_attention_mask & attention_mask
|
|
if sequence_length == 1:
|
|
chunked_attention_mask = chunked_attention_mask[-1:]
|
|
if self.config._attn_implementation == "eager":
|
|
chunked_attention_mask = (
|
|
chunked_attention_mask[None, None, :, :]
|
|
.to(dtype)
|
|
.masked_fill(chunked_attention_mask, torch.finfo(dtype).min)
|
|
)
|
|
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and attention_mask is not None
|
|
and attention_mask.device.type in ["cuda", "xpu"]
|
|
and attention_mask.ndim == 4
|
|
and not output_attentions # Only unmask for 4d masks
|
|
):
|
|
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
|
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
|
# Details: https://github.com/pytorch/pytorch/issues/110213
|
|
min_dtype = torch.finfo(dtype).min
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
|
# chunked_attention_mask = AttentionMaskConverter._unmask_unattended(chunked_attention_mask, min_dtype)
|
|
|
|
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
|
if self.config._attn_implementation == "sdpa" and chunked_attention_mask is not None:
|
|
chunked_attention_mask = chunked_attention_mask.bool()
|
|
causal_mask = causal_mask.bool()
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
|
attention_mask,
|
|
inputs_embeds=input_tensor,
|
|
past_key_values_length=first_cache_position,
|
|
is_training=self.training,
|
|
):
|
|
causal_mask = None
|
|
return causal_mask, chunked_attention_mask
|
|
|
|
def create_chunked_attention_mask(
|
|
self, attention_chunk_size: int, start: int, end: int, device: torch.device
|
|
) -> torch.Tensor:
|
|
"""
|
|
Generate the following:
|
|
|
|
'What' : 0 ■ ⬚ ⬚ ⬚ ⬚ ⬚ |
|
|
'▁is' : 1 ■ ■ ⬚ ⬚ ⬚ ⬚ |
|
|
'▁ch' : 2 ■ ■ ■ ⬚ ⬚ ⬚ |
|
|
'unked' : 3 ⬚ ⬚ ⬚ ■ ⬚ ⬚ |
|
|
'▁attention': 4 ⬚ ⬚ ⬚ ■ ■ ⬚ |
|
|
'?' : 5 ⬚ ⬚ ⬚ ■ ■ ■ |
|
|
|
|
If the chunk size is 3.
|
|
This can just be appplied over the already created attention mask
|
|
"""
|
|
block_pos = torch.abs(
|
|
(torch.arange(start, end).unsqueeze(0) // attention_chunk_size)
|
|
- (torch.arange(start, end).unsqueeze(1) // attention_chunk_size)
|
|
)
|
|
token_pos = torch.arange(start, end).unsqueeze(0) - torch.arange(start, end).unsqueeze(1)
|
|
mask = (block_pos == 0) & (token_pos <= 0)
|
|
return mask.to(device)
|
|
|
|
@staticmethod
|
|
def _prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask: torch.Tensor,
|
|
sequence_length: int,
|
|
target_length: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
cache_position: torch.Tensor,
|
|
batch_size: int,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
|
|
|
Args:
|
|
attention_mask (`torch.Tensor`):
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
|
`(batch_size, 1, query_length, key_value_length)`.
|
|
sequence_length (`int`):
|
|
The sequence length being processed.
|
|
target_length (`int`):
|
|
The target length: when generating with static cache, the mask should be as long as the static cache,
|
|
to account for the 0 padding, the part of the cache that is not filled yet.
|
|
dtype (`torch.dtype`):
|
|
The dtype to use for the 4D attention mask.
|
|
device (`torch.device`):
|
|
The device to plcae the 4D attention mask on.
|
|
cache_position (`torch.Tensor`):
|
|
Indices depicting the position of the input sequence tokens in the sequence.
|
|
batch_size (`torch.Tensor`):
|
|
Batch size.
|
|
"""
|
|
if attention_mask is not None and attention_mask.dim() == 4:
|
|
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
|
causal_mask = attention_mask
|
|
else:
|
|
min_dtype = torch.finfo(dtype).min
|
|
causal_mask = torch.full(
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
|
)
|
|
if sequence_length != 1:
|
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.to(device).reshape(-1, 1)
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
|
if attention_mask is not None:
|
|
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
|
mask_length = attention_mask.shape[-1]
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(device)
|
|
padding_mask = padding_mask == 0
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
|
padding_mask, min_dtype
|
|
)
|
|
|
|
return causal_mask
|
|
|
|
|
|
class Llama4ForCausalLM(Llama4PreTrainedModel, GenerationMixin):
|
|
base_model_prefix = "language_model"
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
_tp_plan = {"lm_head": "colwise_rep"}
|
|
config_class = Llama4TextConfig
|
|
|
|
def __init__(self, config: Llama4TextConfig):
|
|
super().__init__(config)
|
|
self.model = Llama4TextModel(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
@add_start_docstrings_to_model_forward(LLAMA4_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
**kwargs,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, Llama4ForCausalLM
|
|
|
|
>>> model = Llama4ForCausalLM.from_pretrained("meta-llama4/Llama4-2-7b-hf")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama4/Llama4-2-7b-hf")
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
cache_position=cache_position,
|
|
**kwargs,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class Llama4CausalLMOutputWithPast(ModelOutput):
|
|
"""
|
|
Base class for Llava causal language model (or autoregressive) outputs.
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
Language modeling loss (for next-token prediction).
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
`past_key_values` input) to speed up sequential decoding.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
image_hidden_states (`torch.FloatTensor`, *optional*):
|
|
A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`.
|
|
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: torch.FloatTensor = None
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
image_hidden_states: Optional[torch.FloatTensor] = None
|
|
|
|
|
|
class Llama4VisionMLP2(torch.nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.intermediate_size = config.intermediate_size
|
|
self.fc1 = nn.Linear(self.intermediate_size, config.projector_input_dim, bias=False)
|
|
self.fc2 = nn.Linear(config.projector_output_dim, config.projector_output_dim, bias=False)
|
|
self.activation_fn = nn.GELU() # ACT2FN[config.hidden_act]
|
|
self.dropout = config.projector_dropout
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
return self.activation_fn(self.fc2(hidden_states))
|
|
|
|
|
|
class Llama4MultiModalProjector(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.linear_1 = nn.Linear(
|
|
config.vision_config.vision_output_dim,
|
|
config.text_config.hidden_size,
|
|
bias=False,
|
|
)
|
|
|
|
def forward(self, image_features):
|
|
hidden_states = self.linear_1(image_features)
|
|
return hidden_states
|
|
|
|
|
|
def pixel_shuffle(input_tensor, shuffle_ratio):
|
|
# input_tensor: [batch_size, num_patches, channels]
|
|
batch_size, num_patches, channels = input_tensor.shape
|
|
patch_size = int(math.sqrt(num_patches))
|
|
|
|
input_tensor = input_tensor.view(batch_size, patch_size, patch_size, -1)
|
|
batch_size, height, width, channels = input_tensor.size()
|
|
|
|
reshaped_tensor = input_tensor.view(batch_size, height, int(width * shuffle_ratio), int(channels / shuffle_ratio))
|
|
reshaped_tensor = reshaped_tensor.permute(0, 2, 1, 3).contiguous()
|
|
|
|
reshaped_tensor = reshaped_tensor.view(
|
|
batch_size, int(height * shuffle_ratio), int(width * shuffle_ratio), int(channels / (shuffle_ratio**2))
|
|
)
|
|
reshaped_tensor = reshaped_tensor.permute(0, 2, 1, 3).contiguous()
|
|
|
|
output_tensor = reshaped_tensor.view(batch_size, -1, reshaped_tensor.shape[-1])
|
|
return output_tensor
|
|
|
|
|
|
class Llama4VisionPixelShuffleMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.pixel_shuffle_ratio = config.pixel_shuffle_ratio
|
|
self.inner_dim = int(config.projector_input_dim // (self.pixel_shuffle_ratio**2))
|
|
self.output_dim = config.projector_output_dim
|
|
self.mlp = Llama4VisionMLP2(config)
|
|
|
|
def forward(self, encoded_patches: torch.Tensor) -> torch.Tensor:
|
|
encoded_patches = pixel_shuffle(encoded_patches, self.pixel_shuffle_ratio)
|
|
return self.mlp(encoded_patches)
|
|
|
|
|
|
LLAVA_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`LlavaConfig`] or [`LlavaVisionConfig`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
|
|
# TODO there is a different RoPE for vision encoder, defined as below
|
|
def reshape_for_broadcast(freqs_ci: torch.Tensor, query: torch.Tensor):
|
|
ndim = query.ndim
|
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(query.shape)]
|
|
return freqs_ci.view(*shape)
|
|
|
|
|
|
def vision_apply_rotary_emb(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
freqs_ci: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
query_ = torch.view_as_complex(query.float().reshape(*query.shape[:-1], -1, 2))
|
|
key_ = torch.view_as_complex(key.float().reshape(*key.shape[:-1], -1, 2))
|
|
freqs_ci = reshape_for_broadcast(freqs_ci=freqs_ci, query=query_) # freqs_ci[:,:,None,:]
|
|
freqs_ci = freqs_ci.to(query_.device)
|
|
query_out = torch.view_as_real(query_ * freqs_ci).flatten(3)
|
|
key_out = torch.view_as_real(key_ * freqs_ci).flatten(3)
|
|
return query_out.type_as(query), key_out.type_as(key) # but this drops to 8e-3
|
|
|
|
|
|
class Llama4VisionAttention(nn.Module):
|
|
def __init__(self, config: Llama4VisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = config.hidden_size // config.num_attention_heads
|
|
self.num_key_value_groups = 1
|
|
self.attention_dropout = config.attention_dropout
|
|
|
|
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=True)
|
|
self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=True)
|
|
self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=True)
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=True)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
freqs_ci: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
**kwargs: Unpack[FlashAttentionKwargs],
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
input_shape = hidden_states.shape[:-1]
|
|
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape)
|
|
key_states = self.k_proj(hidden_states).view(hidden_shape)
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape)
|
|
|
|
query_states, key_states = vision_apply_rotary_emb(query_states, key_states, freqs_ci=freqs_ci)
|
|
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
attention_interface: Callable = eager_attention_forward
|
|
# flex disable because breaks on TP 8, embed is 88 not power of 2
|
|
if self.config._attn_implementation not in ["eager", "flex_attention"]:
|
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
|
logger.warning_once(
|
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
)
|
|
else:
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
|
|
attn_output, attn_weights = attention_interface(
|
|
self,
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
None,
|
|
dropout=0.0 if not self.training else self.attention_dropout,
|
|
scaling=None,
|
|
is_causal=False, # HAS TO BE ENFORCED
|
|
**kwargs,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
return attn_output, attn_weights
|
|
|
|
|
|
class Llama4VisionMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = nn.GELU() # ACT2FN[config.hidden_act]
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Llama4VisionEncoderLayer(nn.Module):
|
|
def __init__(self, config: Llama4VisionConfig):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.self_attn = Llama4VisionAttention(config)
|
|
self.mlp = Llama4VisionMLP(config)
|
|
|
|
self.input_layernorm = nn.LayerNorm(config.hidden_size)
|
|
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_state: torch.Tensor,
|
|
freqs_ci: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: bool = None,
|
|
):
|
|
# Self Attention
|
|
residual = hidden_state
|
|
|
|
hidden_state = self.input_layernorm(hidden_state)
|
|
|
|
hidden_state, attn_weights = self.self_attn(
|
|
hidden_state,
|
|
freqs_ci=freqs_ci,
|
|
attention_mask=attention_mask,
|
|
)
|
|
hidden_state = residual + hidden_state
|
|
|
|
# Feed forward
|
|
residual = hidden_state
|
|
hidden_state = self.post_attention_layernorm(hidden_state)
|
|
hidden_state = self.mlp(hidden_state)
|
|
hidden_state = residual + hidden_state
|
|
|
|
outputs = (hidden_state,)
|
|
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
return outputs
|
|
|
|
|
|
class Llama4VisionEncoder(nn.Module):
|
|
"""
|
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
|
[`Llama4VisionEncoderLayer`].
|
|
|
|
Args:
|
|
config: Llama4VisionConfig
|
|
"""
|
|
|
|
def __init__(self, config: Llama4VisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layers = nn.ModuleList([Llama4VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
self.gradient_checkpointing = False
|
|
self.config = config
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
freqs_ci: torch.Tensor, # TODO move this to an attribute instead of keeping it around
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutput]:
|
|
r"""
|
|
Args:
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
|
than the model's internal embedding lookup matrix.
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
for more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
for encoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
encoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_state=hidden_states,
|
|
attention_mask=attention_mask,
|
|
output_attentions=output_attentions,
|
|
freqs_ci=freqs_ci,
|
|
)
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
|
)
|
|
|
|
|
|
class Llama4UnfoldConvolution(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
kernel_size = config.patch_size
|
|
if isinstance(kernel_size, int):
|
|
kernel_size = (kernel_size, kernel_size)
|
|
self.unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=config.patch_size)
|
|
self.linear = nn.Linear(
|
|
config.num_channels * kernel_size[0] * kernel_size[1],
|
|
config.hidden_size,
|
|
bias=False,
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.unfold(hidden_states)
|
|
hidden_states = hidden_states.permute(0, 2, 1)
|
|
hidden_states = self.linear(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Llama4VisionRotaryEmbedding(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
idx = config.image_size // config.patch_size
|
|
img_idx = torch.arange(idx**2, dtype=torch.int32).reshape(idx**2, 1)
|
|
img_idx = torch.cat([img_idx, img_idx[:1]], dim=0)
|
|
img_idx[-1, -1] = -2 # ID_CLS_TOKEN
|
|
frequencies_x = img_idx % idx # get the coordinates of the 2d matrix along x
|
|
frequencies_y = img_idx // idx # get the coordinates of the 2d matrix along y
|
|
freq_dim = config.hidden_size // config.num_attention_heads // 2
|
|
rope_freq = 1.0 / (config.rope_theta ** (torch.arange(0, freq_dim, 2)[: (freq_dim // 2)].float() / freq_dim))
|
|
freqs_x = ((frequencies_x + 1)[..., None] * rope_freq[None, None, :]).repeat_interleave(2, dim=-1)
|
|
freqs_y = ((frequencies_y + 1)[..., None] * rope_freq[None, None, :]).repeat_interleave(2, dim=-1)
|
|
freqs = torch.cat([freqs_x, freqs_y], dim=-1).float().contiguous()[..., ::2]
|
|
freqs = freqs.masked_fill(img_idx.reshape(-1, 1, 1) < 0, 0)
|
|
freq_cis = torch.view_as_complex(torch.stack([torch.cos(freqs), torch.sin(freqs)], dim=-1))
|
|
self.freqs_ci = freq_cis # idx**2, idx**2, idx * 2
|
|
|
|
def forward(self, hidden_states):
|
|
return self.freqs_ci.to(hidden_states.device)
|
|
|
|
|
|
class Llama4VisionModel(Llama4PreTrainedModel):
|
|
base_model_prefix = "vision_model"
|
|
_no_split_modules = ["Llama4VisionAttention"]
|
|
config_class = Llama4VisionConfig
|
|
|
|
def __init__(self, config: Llama4VisionConfig):
|
|
super().__init__(config)
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
self.hidden_size = config.hidden_size
|
|
self.num_channels = config.num_channels
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
|
|
self.scale = config.hidden_size**-0.5
|
|
|
|
self.patch_embedding = Llama4UnfoldConvolution(config)
|
|
|
|
self.class_embedding = nn.Parameter(self.scale * torch.randn(self.hidden_size))
|
|
self.positional_embedding_vlm = nn.Parameter(self.scale * torch.randn(self.num_patches, self.hidden_size))
|
|
self.rotary_embedding = Llama4VisionRotaryEmbedding(config)
|
|
|
|
# layer norms
|
|
self.layernorm_pre = nn.LayerNorm(self.hidden_size)
|
|
self.layernorm_post = nn.LayerNorm(self.hidden_size)
|
|
|
|
# encoders
|
|
self.model = Llama4VisionEncoder(config)
|
|
self.vision_adapter = Llama4VisionPixelShuffleMLP(config)
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
"""
|
|
This function is used to fetch the first embedding layer to activate grads on inputs.
|
|
"""
|
|
return self.patch_embedding
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
|
|
r"""
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, MllamaVisionModel
|
|
|
|
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
|
|
>>> model = MllamaVisionModel.from_pretrained(checkpoint)
|
|
>>> processor = AutoProcessor.from_pretrained(checkpoint)
|
|
|
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
>>> inputs = processor(images=image, return_tensors="pt")
|
|
|
|
>>> output = model(**inputs)
|
|
|
|
>>> print(output.last_hidden_state.shape)
|
|
torch.Size([1, 1, 4, 1025, 7680])
|
|
```
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# num_concurrent_media and num_chunks are both currently 1
|
|
batch_size_times_num_tiles, num_channels, height, width = pixel_values.shape
|
|
num_concurrent_media = 1
|
|
num_chunks = 1
|
|
hidden_state = self.patch_embedding(pixel_values)
|
|
_, num_patches, hidden_dim = hidden_state.shape
|
|
|
|
# Add cls token
|
|
hidden_state = hidden_state.reshape(
|
|
batch_size_times_num_tiles * num_concurrent_media * num_chunks, num_patches, hidden_dim
|
|
)
|
|
class_embedding = self.class_embedding.expand(hidden_state.shape[0], 1, hidden_state.shape[-1])
|
|
hidden_state = torch.cat([hidden_state, class_embedding], dim=1)
|
|
num_patches += 1
|
|
|
|
# Position embeddings
|
|
hidden_state = hidden_state.reshape(
|
|
batch_size_times_num_tiles * num_concurrent_media, num_chunks, num_patches, hidden_dim
|
|
)
|
|
positional_embedding = self.positional_embedding_vlm.to(dtype=hidden_state.dtype, device=hidden_state.device)
|
|
hidden_state = hidden_state + positional_embedding
|
|
|
|
hidden_state = self.layernorm_pre(hidden_state)
|
|
|
|
hidden_state = hidden_state.view(batch_size_times_num_tiles, -1, hidden_dim)
|
|
freqs_ci = self.rotary_embedding(pixel_values)
|
|
|
|
output = self.model(
|
|
hidden_state,
|
|
attention_mask=None,
|
|
output_hidden_states=output_hidden_states,
|
|
output_attentions=output_attentions,
|
|
freqs_ci=freqs_ci,
|
|
)
|
|
|
|
hidden_state = output.last_hidden_state
|
|
|
|
hidden_state = self.layernorm_post(hidden_state)
|
|
|
|
hidden_state = hidden_state[:, :-1, :]
|
|
|
|
# now, we use Llama4VisionPixelShuffle + mlp to project embeddings
|
|
hidden_state = self.vision_adapter(hidden_state)
|
|
|
|
hidden_states = output.hidden_states if output_hidden_states else None
|
|
|
|
if output_attentions:
|
|
attentions = output[2]
|
|
else:
|
|
attentions = None
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_state, hidden_states, attentions] if v is not None)
|
|
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_state,
|
|
hidden_states=hidden_states,
|
|
attentions=attentions,
|
|
)
|
|
|
|
|
|
class Llama4ForConditionalGeneration(Llama4PreTrainedModel, GenerationMixin):
|
|
_tp_plan = {}
|
|
base_model_prefix = ""
|
|
config_class = Llama4Config
|
|
_supports_flex_attn = True
|
|
|
|
def __init__(self, config: Llama4Config):
|
|
super().__init__(config)
|
|
self.vision_model = Llama4VisionModel(config.vision_config)
|
|
|
|
self.multi_modal_projector = Llama4MultiModalProjector(config)
|
|
self.language_model = Llama4ForCausalLM(config.text_config)
|
|
self.vocab_size = config.text_config.vocab_size
|
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.language_model.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.language_model.set_input_embeddings(value)
|
|
|
|
def get_output_embeddings(self):
|
|
return self.language_model.get_output_embeddings()
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.language_model.set_output_embeddings(new_embeddings)
|
|
|
|
def set_decoder(self, decoder):
|
|
self.language_model.set_decoder(decoder)
|
|
|
|
def get_decoder(self):
|
|
return self.language_model.get_decoder()
|
|
|
|
def get_image_features(
|
|
self,
|
|
pixel_values: torch.FloatTensor,
|
|
vision_feature_layer: Union[int, List[int]],
|
|
vision_feature_select_strategy: str,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Obtains image last hidden states from the vision tower and apply al projection.
|
|
|
|
Args:
|
|
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
|
|
The tensors corresponding to the input images.
|
|
vision_feature_layer (`Union[int, List[int]]`):
|
|
The index of the layer to select the vision feature. If multiple indices are provided,
|
|
the vision feature of the corresponding indices will be concatenated to form the
|
|
vision features.
|
|
vision_feature_select_strategy (`str`):
|
|
The feature selection strategy used to select the vision feature from the vision backbone.
|
|
Can be one of `"default"` or `"full"`
|
|
Returns:
|
|
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
|
"""
|
|
if vision_feature_select_strategy not in ["default", "full"]:
|
|
raise ValueError(f"Unexpected select feature strategy: {self.vision_feature_select_strategy}")
|
|
kwargs = {k: v for k, v in kwargs.items() if v is not None}
|
|
image_outputs = self.vision_model(pixel_values, output_hidden_states=False, **kwargs)
|
|
hidden_state = image_outputs.last_hidden_state
|
|
return hidden_state
|
|
|
|
@replace_return_docstrings(output_type=Llama4CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
pixel_values: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
vision_feature_layer: Optional[Union[int, List[int]]] = None,
|
|
vision_feature_select_strategy: Optional[str] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
image_sizes: torch.Tensor = None,
|
|
**lm_kwargs,
|
|
) -> Union[Tuple, Llama4CausalLMOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, LlavaForConditionalGeneration
|
|
|
|
>>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
|
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
|
|
|
>>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
|
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(**inputs, max_new_tokens=15)
|
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
|
|
```"""
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
vision_feature_layer = (
|
|
vision_feature_layer
|
|
if vision_feature_layer is not None
|
|
else self.config.vision_config.vision_feature_layer
|
|
)
|
|
vision_feature_select_strategy = (
|
|
vision_feature_select_strategy
|
|
if vision_feature_select_strategy is not None
|
|
else self.config.vision_config.vision_feature_select_strategy
|
|
)
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if pixel_values is not None and inputs_embeds is not None:
|
|
raise ValueError(
|
|
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
|
)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
|
|
if pixel_values is not None:
|
|
image_features = self.get_image_features(
|
|
pixel_values=pixel_values,
|
|
vision_feature_layer=vision_feature_layer,
|
|
vision_feature_select_strategy=vision_feature_select_strategy,
|
|
image_sizes=image_sizes,
|
|
)
|
|
original_inputs_embeds_shape = inputs_embeds.shape
|
|
|
|
vision_flat = image_features.view(-1, image_features.size(-1))
|
|
projected_vision_flat = self.multi_modal_projector(vision_flat)
|
|
|
|
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
|
final_mask = special_image_mask.to(inputs_embeds.device)
|
|
inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1))
|
|
|
|
final_mask_1d = final_mask[..., 0].reshape(-1)
|
|
num_tokens_to_fill = final_mask_1d.sum()
|
|
|
|
if num_tokens_to_fill != projected_vision_flat.size(0):
|
|
raise ValueError(
|
|
f"Mismatch: final_mask wants {num_tokens_to_fill} embeddings, "
|
|
f"but multi_modal_projector returned {projected_vision_flat.size(0)}"
|
|
)
|
|
|
|
expanded_mask = final_mask_1d.unsqueeze(-1).expand(-1, inputs_embeds.size(-1))
|
|
inputs_embeds.masked_scatter_(expanded_mask, projected_vision_flat)
|
|
|
|
inputs_embeds = inputs_embeds.view(original_inputs_embeds_shape)
|
|
|
|
outputs = self.language_model(
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
cache_position=cache_position,
|
|
logits_to_keep=logits_to_keep,
|
|
**lm_kwargs,
|
|
)
|
|
|
|
logits = outputs[0]
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
if attention_mask is not None:
|
|
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
|
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
|
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
|
|
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
|
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
|
else:
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = nn.CrossEntropyLoss()
|
|
loss = loss_fct(
|
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
|
)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return Llama4CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
image_hidden_states=image_features if pixel_values is not None else None,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids,
|
|
past_key_values=None,
|
|
inputs_embeds=None,
|
|
pixel_values=None,
|
|
attention_mask=None,
|
|
cache_position=None,
|
|
logits_to_keep=None,
|
|
**kwargs,
|
|
):
|
|
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
|
|
|
model_inputs = self.language_model.prepare_inputs_for_generation(
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
cache_position=cache_position,
|
|
logits_to_keep=logits_to_keep,
|
|
**kwargs,
|
|
)
|
|
|
|
if cache_position[0] == 0:
|
|
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
|
# Otherwise we need pixel values to be passed to model
|
|
model_inputs["pixel_values"] = pixel_values
|
|
|
|
return model_inputs
|
|
|
|
@staticmethod
|
|
def _prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask: torch.Tensor,
|
|
sequence_length: int,
|
|
target_length: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
cache_position: torch.Tensor,
|
|
batch_size: int,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
|
|
|
Args:
|
|
attention_mask (`torch.Tensor`):
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
|
`(batch_size, 1, query_length, key_value_length)`.
|
|
sequence_length (`int`):
|
|
The sequence length being processed.
|
|
target_length (`int`):
|
|
The target length: when generating with static cache, the mask should be as long as the static cache,
|
|
to account for the 0 padding, the part of the cache that is not filled yet.
|
|
dtype (`torch.dtype`):
|
|
The dtype to use for the 4D attention mask.
|
|
device (`torch.device`):
|
|
The device to place the 4D attention mask on.
|
|
cache_position (`torch.Tensor`):
|
|
Indices depicting the position of the input sequence tokens in the sequence.
|
|
batch_size (`torch.Tensor`):
|
|
Batch size.
|
|
"""
|
|
if attention_mask is not None and attention_mask.dim() == 4:
|
|
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
|
causal_mask = attention_mask
|
|
else:
|
|
min_dtype = torch.finfo(dtype).min
|
|
causal_mask = torch.full(
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
|
)
|
|
if sequence_length != 1:
|
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
|
if attention_mask is not None:
|
|
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
|
mask_length = attention_mask.shape[-1]
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
|
causal_mask.device
|
|
)
|
|
padding_mask = padding_mask == 0
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
|
padding_mask, min_dtype
|
|
)
|
|
|
|
return causal_mask
|
|
|
|
|
|
__all__ = [
|
|
"Llama4PreTrainedModel",
|
|
"Llama4TextModel",
|
|
"Llama4VisionModel",
|
|
"Llama4ForCausalLM",
|
|
"Llama4ForConditionalGeneration",
|
|
]
|