transformers/tests/pipelines/test_pipelines_image_text_to_text.py
Joao Gante 9c500015c5
🚨🚨🚨 [pipelines] update defaults in pipelines that can generate (#38129)
* pipeline generation defaults

* add max_new_tokens=20 in test pipelines

* pop all kwargs that are used to parameterize generation config

* add class attr that tell us whether a pipeline calls generate

* tmp commit

* pt text gen pipeline tests passing

* remove failing tf tests

* fix text gen pipeline mixin test corner case

* update text_to_audio pipeline tests

* trigger tests

* a few more tests

* skips

* some more audio tests

* not slow

* broken

* lower severity of generation mode errors

* fix all asr pipeline tests

* nit

* skip

* image to text pipeline tests

* text2test pipeline

* last pipelines

* fix flaky

* PR comments

* handle generate attrs more carefully in models that cant generate

* same as above
2025-05-19 18:02:06 +01:00

389 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import unittest
from transformers import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING, is_vision_available
from transformers.pipelines import ImageTextToTextPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
class ImageTextToTextPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING
def get_test_pipeline(self, model, tokenizer, processor, image_processor, torch_dtype="float32"):
pipe = ImageTextToTextPipeline(model=model, processor=processor, torch_dtype=torch_dtype, max_new_tokens=10)
image_token = getattr(processor.tokenizer, "image_token", "")
examples = [
{
"images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"text": f"{image_token}This is a ",
},
{
"images": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"text": f"{image_token}Here I see a ",
},
]
return pipe, examples
def run_pipeline_test(self, pipe, examples):
outputs = pipe(examples[0].get("images"), text=examples[0].get("text"))
self.assertEqual(
outputs,
[
{"input_text": ANY(str), "generated_text": ANY(str)},
],
)
@require_torch
def test_small_model_pt_token_text_only(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
text = "What is the capital of France? Assistant:"
outputs = pipe(text=text)
self.assertEqual(
outputs,
[
{
"input_text": "What is the capital of France? Assistant:",
"generated_text": "What is the capital of France? Assistant: The capital of France is Paris.",
}
],
)
messages = [
[
{
"role": "user",
"content": [
{"type": "text", "text": "Write a poem on Hugging Face, the company"},
],
},
],
[
{
"role": "user",
"content": [
{"type": "text", "text": "What is the capital of France?"},
],
},
],
]
outputs = pipe(text=messages)
self.assertEqual(
outputs,
[
[
{
"input_text": [
{
"role": "user",
"content": [{"type": "text", "text": "Write a poem on Hugging Face, the company"}],
}
],
"generated_text": [
{
"role": "user",
"content": [{"type": "text", "text": "Write a poem on Hugging Face, the company"}],
},
{
"role": "assistant",
"content": "Hugging Face, a company of minds\nWith tools and services that make our lives easier\nFrom",
},
],
}
],
[
{
"input_text": [
{"role": "user", "content": [{"type": "text", "text": "What is the capital of France?"}]}
],
"generated_text": [
{"role": "user", "content": [{"type": "text", "text": "What is the capital of France?"}]},
{"role": "assistant", "content": "Paris"},
],
}
],
],
)
@require_torch
def test_small_model_pt_token(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
text = "<image> What this is? Assistant: This is"
outputs = pipe(image, text=text)
self.assertEqual(
outputs,
[
{
"input_text": "<image> What this is? Assistant: This is",
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
}
],
)
outputs = pipe([image, image], text=[text, text])
self.assertEqual(
outputs,
[
{
"input_text": "<image> What this is? Assistant: This is",
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
},
{
"input_text": "<image> What this is? Assistant: This is",
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
},
],
)
@require_torch
def test_consistent_batching_behaviour(self):
pipe = pipeline("image-text-to-text", model="microsoft/kosmos-2-patch14-224")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe([image, image], text=[prompt, prompt], max_new_tokens=10)
outputs_batched = pipe([image, image], text=[prompt, prompt], batch_size=2, max_new_tokens=10)
self.assertEqual(outputs, outputs_batched)
@slow
@require_torch
def test_model_pt_chat_template(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
image_ny = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
image_chicago = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg"
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between these two images?"},
{"type": "image"},
{"type": "image"},
],
}
]
outputs = pipe([image_ny, image_chicago], text=messages, return_full_text=True, max_new_tokens=10)
self.assertEqual(
outputs,
[
{
"input_text": [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between these two images?"},
{
"type": "image",
"image": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"image": "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg",
},
],
}
],
"generated_text": [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between these two images?"},
{
"type": "image",
"image": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"image": "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg",
},
],
},
{
"role": "assistant",
"content": "The first image shows a statue of Liberty in the",
},
],
}
],
)
@slow
@require_torch
def test_model_pt_chat_template_continue_final_message(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "There is a dog and"},
],
},
]
outputs = pipe(text=messages, max_new_tokens=10)
self.assertEqual(
outputs,
[
{
"input_text": [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
},
{"role": "assistant", "content": [{"type": "text", "text": "There is a dog and"}]},
],
"generated_text": [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "There is a dog and a person in the image. The dog is sitting",
}
],
},
],
}
],
)
@slow
@require_torch
def test_model_pt_chat_template_new_text(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
outputs = pipe(text=messages, return_full_text=False, max_new_tokens=10)
self.assertEqual(
outputs,
[
{
"input_text": [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
],
"generated_text": "In the image, a woman is sitting on the",
}
],
)
@slow
@require_torch
def test_model_pt_chat_template_image_url(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
},
},
{"type": "text", "text": "Describe this image in one sentence."},
],
}
]
outputs = pipe(text=messages, return_full_text=False, max_new_tokens=10)[0]["generated_text"]
self.assertEqual(outputs, "A statue of liberty in the foreground of a city")
@slow
@require_torch
def test_model_pt_chat_template_image_url_base64(self):
with open("./tests/fixtures/tests_samples/COCO/000000039769.png", "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
pipe = pipeline("image-text-to-text", model="llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
{"type": "text", "text": "Describe this image in one sentence."},
],
}
]
outputs = pipe(text=messages, return_full_text=False, max_new_tokens=10)[0]["generated_text"]
self.assertEqual(outputs, "Two cats are sleeping on a pink blanket, with")