mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 10:38:23 +06:00

help for `ModelArguments.gradient_checkpointing` should be "If True, use gradient checkpointing to save memory at the expense of slower backward pass." not "Whether to freeze the feature extractor layers of the model." (which is duplicated from `freeze_feature_extractor` arg)
395 lines
15 KiB
Python
Executable File
395 lines
15 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import logging
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import torch
|
|
from datasets import DatasetDict, load_dataset
|
|
from packaging import version
|
|
from torch import nn
|
|
|
|
import librosa
|
|
from transformers import (
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
Wav2Vec2Config,
|
|
Wav2Vec2FeatureExtractor,
|
|
Wav2Vec2ForPreTraining,
|
|
is_apex_available,
|
|
trainer_utils,
|
|
)
|
|
from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices
|
|
|
|
|
|
if is_apex_available():
|
|
from apex import amp
|
|
|
|
if version.parse(torch.__version__) >= version.parse("1.6"):
|
|
_is_native_amp_available = True
|
|
from torch.cuda.amp import autocast
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
freeze_feature_extractor: Optional[bool] = field(
|
|
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
|
|
)
|
|
gradient_checkpointing: Optional[bool] = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
|
|
},
|
|
)
|
|
verbose_logging: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Whether to log verbose messages or not."},
|
|
)
|
|
max_gumbel_temperature: Optional[float] = field(
|
|
default=2.0, metadata={"help": "Maximum temperature for gumbel softmax."}
|
|
)
|
|
min_gumbel_temperature: Optional[float] = field(
|
|
default=0.5, metadata={"help": "Minimum temperature for gumbel softmax."}
|
|
)
|
|
gumbel_temperature_decay: Optional[float] = field(
|
|
default=0.999995, metadata={"help": "Decay of gumbel temperature during training."}
|
|
)
|
|
|
|
|
|
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments):
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
logging_level = logging.WARNING
|
|
if model_args.verbose_logging:
|
|
logging_level = logging.DEBUG
|
|
elif trainer_utils.is_main_process(training_args.local_rank):
|
|
logging_level = logging.INFO
|
|
logger.setLevel(logging_level)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
|
|
Using `HfArgumentParser` we can turn this class
|
|
into argparse arguments to be able to specify them on
|
|
the command line.
|
|
"""
|
|
|
|
dataset_name: str = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_split_name: Optional[str] = field(
|
|
default="train",
|
|
metadata={
|
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
|
},
|
|
)
|
|
validation_split_name: Optional[str] = field(
|
|
default="validation",
|
|
metadata={
|
|
"help": "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"
|
|
},
|
|
)
|
|
speech_file_column: Optional[str] = field(
|
|
default="file",
|
|
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_duration_in_seconds: Optional[float] = field(
|
|
default=20.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataCollatorForWav2Vec2Pretraining:
|
|
"""
|
|
Data collator that will dynamically pad the inputs received and prepare masked indices
|
|
for self-supervised pretraining.
|
|
|
|
Args:
|
|
model (:class:`~transformers.Wav2Vec2ForPreTraining`):
|
|
The Wav2Vec2 model used for pretraining. The data collator needs to have access
|
|
to config and ``_get_feat_extract_output_lengths`` function for correct padding.
|
|
feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`):
|
|
The processor used for proccessing the data.
|
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
|
among:
|
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided.
|
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
|
different lengths).
|
|
max_length (:obj:`int`, `optional`):
|
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
|
pad_to_multiple_of (:obj:`int`, `optional`):
|
|
If set will pad the sequence to a multiple of the provided value.
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
|
7.5 (Volta).
|
|
"""
|
|
|
|
model: Wav2Vec2ForPreTraining
|
|
feature_extractor: Wav2Vec2FeatureExtractor
|
|
padding: Union[bool, str] = "longest"
|
|
pad_to_multiple_of: Optional[int] = None
|
|
max_length: Optional[int] = None
|
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
|
# reformat list to dict and set to pytorch format
|
|
batch = self.feature_extractor.pad(
|
|
features,
|
|
max_length=self.max_length,
|
|
padding=self.padding,
|
|
pad_to_multiple_of=self.pad_to_multiple_of,
|
|
return_tensors="pt",
|
|
)
|
|
mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1])
|
|
|
|
batch_size = batch["input_values"].shape[0]
|
|
|
|
# make sure that no loss is computed on padded inputs
|
|
if batch["attention_mask"] is not None:
|
|
# compute real output lengths according to convolution formula
|
|
output_lengths = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to(
|
|
torch.long
|
|
)
|
|
|
|
attention_mask = torch.zeros(
|
|
(batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device
|
|
)
|
|
|
|
# these two operations makes sure that all values
|
|
# before the output lengths indices are attended to
|
|
attention_mask[
|
|
(torch.arange(attention_mask.shape[0], device=batch["input_values"].device), output_lengths - 1)
|
|
] = 1
|
|
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
|
|
|
|
# sample randomly masked indices
|
|
batch["mask_time_indices"] = _compute_mask_indices(
|
|
(batch_size, mask_indices_seq_length),
|
|
self.model.config.mask_time_prob,
|
|
self.model.config.mask_time_length,
|
|
device=batch["input_values"].device,
|
|
attention_mask=attention_mask,
|
|
min_masks=2,
|
|
)
|
|
|
|
return batch
|
|
|
|
|
|
class Wav2Vec2PreTrainer(Trainer):
|
|
"""
|
|
Subclassed :class:`~transformers.Trainer` for Wav2Vec2-like pretraining. Trainer can decay gumbel softmax temperature during training.
|
|
"""
|
|
|
|
def __init__(self, *args, max_gumbel_temp=1, min_gumbel_temp=0, gumbel_temp_decay=1.0, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.num_update_step = 0
|
|
self.max_gumbel_temp = max_gumbel_temp
|
|
self.min_gumbel_temp = min_gumbel_temp
|
|
self.gumbel_temp_decay = gumbel_temp_decay
|
|
|
|
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
|
|
"""
|
|
Perform a training step on a batch of inputs.
|
|
|
|
Subclass and override to inject custom behavior.
|
|
|
|
Args:
|
|
model (:obj:`nn.Module`):
|
|
The model to train.
|
|
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
|
|
The inputs and targets of the model.
|
|
|
|
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
|
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
|
|
|
|
Return:
|
|
:obj:`torch.Tensor`: The tensor with training loss on this batch.
|
|
"""
|
|
|
|
model.train()
|
|
inputs = self._prepare_inputs(inputs)
|
|
|
|
if self.use_amp:
|
|
with autocast():
|
|
loss = self.compute_loss(model, inputs)
|
|
else:
|
|
loss = self.compute_loss(model, inputs)
|
|
|
|
if self.args.n_gpu > 1 or self.deepspeed:
|
|
if model.module.config.ctc_loss_reduction == "mean":
|
|
loss = loss.mean()
|
|
elif model.module.config.ctc_loss_reduction == "sum":
|
|
loss = loss.sum() / (inputs["mask_time_indices"]).sum()
|
|
else:
|
|
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']")
|
|
|
|
if self.args.gradient_accumulation_steps > 1:
|
|
loss = loss / self.args.gradient_accumulation_steps
|
|
|
|
if self.use_amp:
|
|
self.scaler.scale(loss).backward()
|
|
elif self.use_apex:
|
|
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
|
|
scaled_loss.backward()
|
|
elif self.deepspeed:
|
|
self.deepspeed.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
|
|
self.num_update_step += 1
|
|
# make sure gumbel softmax temperature is decayed
|
|
if self.args.n_gpu > 1 or self.deepspeed:
|
|
model.module.set_gumbel_temperature(
|
|
max(self.max_gumbel_temp * self.gumbel_temp_decay ** self.num_update_step, self.min_gumbel_temp)
|
|
)
|
|
else:
|
|
model.set_gumbel_temperature(
|
|
max(self.max_gumbel_temp * self.gumbel_temp_decay ** self.num_update_step, self.min_gumbel_temp)
|
|
)
|
|
|
|
return loss.detach()
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
configure_logger(model_args, training_args)
|
|
|
|
# Downloading and loading a dataset from the hub.
|
|
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
|
|
|
|
if "validation" not in datasets.keys():
|
|
# make sure only "validation" and "train" keys remain"
|
|
datasets = DatasetDict()
|
|
datasets["validation"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]",
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
datasets["train"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]",
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
else:
|
|
# make sure only "validation" and "train" keys remain"
|
|
datasets = DatasetDict()
|
|
datasets["validation"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split="validation",
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
datasets["train"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"{data_args.train_split_name}",
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
# only normalized-inputs-training is supported
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=True
|
|
)
|
|
|
|
def prepare_dataset(batch):
|
|
# check that all files have the correct sampling rate
|
|
batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate)
|
|
return batch
|
|
|
|
# load audio files into numpy arrays
|
|
vectorized_datasets = datasets.map(
|
|
prepare_dataset, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names
|
|
)
|
|
|
|
# filter audio files that are too long
|
|
vectorized_datasets = vectorized_datasets.filter(
|
|
lambda data: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
|
|
)
|
|
|
|
def normalize(batch):
|
|
return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate)
|
|
|
|
# normalize and transform to `BatchFeatures`
|
|
vectorized_datasets = vectorized_datasets.map(
|
|
normalize,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
remove_columns=vectorized_datasets["train"].column_names,
|
|
)
|
|
|
|
# pretraining is only supported for "newer" stable layer norm architecture
|
|
# apply_spec_augment has to be True, mask_feature_prob has to be 0.0
|
|
config = Wav2Vec2Config.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
gradient_checkpointing=model_args.gradient_checkpointing,
|
|
)
|
|
|
|
if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
|
|
raise ValueError(
|
|
"PreTraining is only supported for ``config.do_stable_layer_norm=True`` and ``config.feat_extract_norm='layer'"
|
|
)
|
|
|
|
model = Wav2Vec2ForPreTraining(config)
|
|
|
|
data_collator = DataCollatorForWav2Vec2Pretraining(model=model, feature_extractor=feature_extractor)
|
|
|
|
trainer = Wav2Vec2PreTrainer(
|
|
model=model,
|
|
data_collator=data_collator,
|
|
args=training_args,
|
|
train_dataset=vectorized_datasets["train"],
|
|
eval_dataset=vectorized_datasets["validation"],
|
|
tokenizer=feature_extractor,
|
|
max_gumbel_temp=model_args.max_gumbel_temperature,
|
|
min_gumbel_temp=model_args.min_gumbel_temperature,
|
|
gumbel_temp_decay=model_args.gumbel_temperature_decay,
|
|
)
|
|
trainer.train()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|