mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
546 lines
22 KiB
Python
546 lines
22 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning a 🤗 Transformers model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library
|
|
without using a Trainer.
|
|
"""
|
|
|
|
import logging
|
|
import random
|
|
from dataclasses import dataclass, field
|
|
from functools import partial
|
|
from typing import Optional
|
|
|
|
import datasets
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from datasets import ClassLabel, load_dataset, load_metric
|
|
|
|
import transformers
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
MODEL_MAPPING,
|
|
AutoConfig,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
TFAutoModelForTokenClassification,
|
|
TFTrainingArguments,
|
|
create_optimizer,
|
|
set_seed,
|
|
)
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
logger.addHandler(logging.StreamHandler())
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
|
|
|
|
# You should update this to your particular problem to have better documentation of `model_type`
|
|
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
# region Command-line arguments
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
|
"with private models)."
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
|
|
dataset_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_file: Optional[str] = field(
|
|
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
|
|
)
|
|
validation_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
|
|
)
|
|
test_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
|
|
)
|
|
text_column_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
|
|
)
|
|
label_column_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_length: Optional[int] = field(default=256, metadata={"help": "Max length (in tokens) for truncation/padding"})
|
|
pad_to_max_length: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether to pad all samples to model maximum sentence length. "
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
|
|
"efficient on GPU but very bad for TPU."
|
|
},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
max_predict_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
label_all_tokens: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
|
|
"one (in which case the other tokens will have a padding index)."
|
|
},
|
|
)
|
|
return_entity_level_metrics: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
|
else:
|
|
if self.train_file is not None:
|
|
extension = self.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
|
self.task_name = self.task_name.lower()
|
|
|
|
|
|
# endregion
|
|
|
|
|
|
# region Data generator
|
|
def sample_generator(dataset, tokenizer, shuffle, pad_to_multiple_of=None):
|
|
# Trim off the last partial batch if present
|
|
if shuffle:
|
|
sample_ordering = np.random.permutation(len(dataset))
|
|
else:
|
|
sample_ordering = np.arange(len(dataset))
|
|
for sample_idx in sample_ordering:
|
|
example = dataset[int(sample_idx)]
|
|
# Handle dicts with proper padding and conversion to tensor.
|
|
example = tokenizer.pad(example, return_tensors="np", pad_to_multiple_of=pad_to_multiple_of)
|
|
if tokenizer.pad_token_id is not None:
|
|
example["labels"][example["attention_mask"] == 0] = -100
|
|
example = {key: tf.convert_to_tensor(arr) for key, arr in example.items()}
|
|
|
|
yield example, example["labels"] # TF needs some kind of labels, even if we don't use them
|
|
return
|
|
|
|
|
|
# endregion
|
|
|
|
|
|
# region Helper functions
|
|
def dataset_to_tf(dataset, tokenizer, total_batch_size, num_epochs, shuffle):
|
|
train_generator = partial(sample_generator, dataset, tokenizer, shuffle=shuffle)
|
|
train_signature = {
|
|
feature: tf.TensorSpec(shape=(None,), dtype=tf.int64)
|
|
for feature in dataset.features
|
|
if feature != "special_tokens_mask"
|
|
}
|
|
# This may need to be changed depending on your particular model or tokenizer!
|
|
padding_values = {key: tf.convert_to_tensor(0, dtype=tf.int64) for key in dataset.features}
|
|
padding_values["labels"] = tf.convert_to_tensor(-100, dtype=tf.int64)
|
|
if tokenizer.pad_token_id is not None:
|
|
padding_values["input_ids"] = tf.convert_to_tensor(tokenizer.pad_token_id, dtype=tf.int64)
|
|
train_signature["labels"] = train_signature["input_ids"]
|
|
train_signature = (train_signature, train_signature["labels"])
|
|
options = tf.data.Options()
|
|
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
|
|
tf_dataset = (
|
|
tf.data.Dataset.from_generator(train_generator, output_signature=train_signature)
|
|
.with_options(options)
|
|
.padded_batch(
|
|
batch_size=total_batch_size,
|
|
drop_remainder=True,
|
|
padding_values=(padding_values, np.array(0, dtype=np.int64)),
|
|
)
|
|
.repeat(int(num_epochs))
|
|
)
|
|
return tf_dataset
|
|
|
|
|
|
# endregion
|
|
|
|
|
|
def main():
|
|
# region Argument Parsing
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
# endregion
|
|
|
|
# region Setup logging
|
|
# we only want one process per machine to log things on the screen.
|
|
# accelerator.is_local_main_process is only True for one process per machine.
|
|
logger.setLevel(logging.INFO)
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
# If passed along, set the training seed now.
|
|
if training_args.seed is not None:
|
|
set_seed(training_args.seed)
|
|
# endregion
|
|
|
|
# region Loading datasets
|
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
|
|
# 'tokens' is found. You can easily tweak this behavior (see below).
|
|
#
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if data_args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
raw_datasets = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
else:
|
|
data_files = {}
|
|
if data_args.train_file is not None:
|
|
data_files["train"] = data_args.train_file
|
|
if data_args.validation_file is not None:
|
|
data_files["validation"] = data_args.validation_file
|
|
extension = data_args.train_file.split(".")[-1]
|
|
raw_datasets = load_dataset(
|
|
extension,
|
|
data_files=data_files,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
|
|
|
if raw_datasets["train"] is not None:
|
|
column_names = raw_datasets["train"].column_names
|
|
features = raw_datasets["train"].features
|
|
else:
|
|
column_names = raw_datasets["validation"].column_names
|
|
features = raw_datasets["validation"].features
|
|
|
|
if data_args.text_column_name is not None:
|
|
text_column_name = data_args.text_column_name
|
|
elif "tokens" in column_names:
|
|
text_column_name = "tokens"
|
|
else:
|
|
text_column_name = column_names[0]
|
|
|
|
if data_args.label_column_name is not None:
|
|
label_column_name = data_args.label_column_name
|
|
elif f"{data_args.task_name}_tags" in column_names:
|
|
label_column_name = f"{data_args.task_name}_tags"
|
|
else:
|
|
label_column_name = column_names[1]
|
|
|
|
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
|
|
# unique labels.
|
|
def get_label_list(labels):
|
|
unique_labels = set()
|
|
for label in labels:
|
|
unique_labels = unique_labels | set(label)
|
|
label_list = list(unique_labels)
|
|
label_list.sort()
|
|
return label_list
|
|
|
|
if isinstance(features[label_column_name].feature, ClassLabel):
|
|
label_list = features[label_column_name].feature.names
|
|
# No need to convert the labels since they are already ints.
|
|
label_to_id = {i: i for i in range(len(label_list))}
|
|
else:
|
|
label_list = get_label_list(raw_datasets["train"][label_column_name])
|
|
label_to_id = {l: i for i, l in enumerate(label_list)}
|
|
num_labels = len(label_list)
|
|
# endregion
|
|
|
|
# region Load config and tokenizer
|
|
#
|
|
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
if model_args.config_name:
|
|
config = AutoConfig.from_pretrained(model_args.config_name, num_labels=num_labels)
|
|
elif model_args.model_name_or_path:
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, num_labels=num_labels)
|
|
else:
|
|
config = CONFIG_MAPPING[model_args.model_type]()
|
|
logger.warning("You are instantiating a new config instance from scratch.")
|
|
|
|
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
|
|
if not tokenizer_name_or_path:
|
|
raise ValueError(
|
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
|
)
|
|
|
|
if config.model_type in {"gpt2", "roberta"}:
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True, add_prefix_space=True)
|
|
else:
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True)
|
|
# endregion
|
|
|
|
# region Preprocessing the raw datasets
|
|
# First we tokenize all the texts.
|
|
padding = "max_length" if data_args.pad_to_max_length else False
|
|
|
|
# Tokenize all texts and align the labels with them.
|
|
|
|
def tokenize_and_align_labels(examples):
|
|
tokenized_inputs = tokenizer(
|
|
examples[text_column_name],
|
|
max_length=data_args.max_length,
|
|
padding=padding,
|
|
truncation=True,
|
|
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
|
|
is_split_into_words=True,
|
|
)
|
|
|
|
labels = []
|
|
for i, label in enumerate(examples[label_column_name]):
|
|
word_ids = tokenized_inputs.word_ids(batch_index=i)
|
|
previous_word_idx = None
|
|
label_ids = []
|
|
for word_idx in word_ids:
|
|
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
|
|
# ignored in the loss function.
|
|
if word_idx is None:
|
|
label_ids.append(-100)
|
|
# We set the label for the first token of each word.
|
|
elif word_idx != previous_word_idx:
|
|
label_ids.append(label_to_id[label[word_idx]])
|
|
# For the other tokens in a word, we set the label to either the current label or -100, depending on
|
|
# the label_all_tokens flag.
|
|
else:
|
|
label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
|
|
previous_word_idx = word_idx
|
|
|
|
labels.append(label_ids)
|
|
tokenized_inputs["labels"] = labels
|
|
return tokenized_inputs
|
|
|
|
processed_raw_datasets = raw_datasets.map(
|
|
tokenize_and_align_labels,
|
|
batched=True,
|
|
remove_columns=raw_datasets["train"].column_names,
|
|
desc="Running tokenizer on dataset",
|
|
)
|
|
|
|
train_dataset = processed_raw_datasets["train"]
|
|
eval_dataset = processed_raw_datasets["validation"]
|
|
|
|
# Log a few random samples from the training set:
|
|
for index in random.sample(range(len(train_dataset)), 3):
|
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
|
# endregion
|
|
|
|
with training_args.strategy.scope():
|
|
# region Initialize model
|
|
if model_args.model_name_or_path:
|
|
model = TFAutoModelForTokenClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
config=config,
|
|
)
|
|
else:
|
|
logger.info("Training new model from scratch")
|
|
model = TFAutoModelForTokenClassification.from_config(config)
|
|
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
# endregion
|
|
|
|
# region Create TF datasets
|
|
num_replicas = training_args.strategy.num_replicas_in_sync
|
|
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
|
|
train_batches_per_epoch = len(train_dataset) // total_train_batch_size
|
|
tf_train_dataset = dataset_to_tf(
|
|
train_dataset,
|
|
tokenizer,
|
|
total_batch_size=total_train_batch_size,
|
|
num_epochs=training_args.num_train_epochs,
|
|
shuffle=True,
|
|
)
|
|
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
|
|
eval_batches_per_epoch = len(eval_dataset) // total_eval_batch_size
|
|
tf_eval_dataset = dataset_to_tf(
|
|
eval_dataset,
|
|
tokenizer,
|
|
total_batch_size=total_eval_batch_size,
|
|
num_epochs=training_args.num_train_epochs,
|
|
shuffle=False,
|
|
)
|
|
|
|
# endregion
|
|
|
|
# region Optimizer, loss and compilation
|
|
optimizer, lr_schedule = create_optimizer(
|
|
init_lr=training_args.learning_rate,
|
|
num_train_steps=int(training_args.num_train_epochs * train_batches_per_epoch),
|
|
num_warmup_steps=training_args.warmup_steps,
|
|
adam_beta1=training_args.adam_beta1,
|
|
adam_beta2=training_args.adam_beta2,
|
|
adam_epsilon=training_args.adam_epsilon,
|
|
weight_decay_rate=training_args.weight_decay,
|
|
)
|
|
|
|
def dummy_loss(y_true, y_pred):
|
|
return tf.reduce_mean(y_pred)
|
|
|
|
model.compile(loss={"loss": dummy_loss}, optimizer=optimizer)
|
|
# endregion
|
|
|
|
# Metrics
|
|
metric = load_metric("seqeval")
|
|
|
|
def get_labels(y_pred, y_true):
|
|
# Transform predictions and references tensos to numpy arrays
|
|
|
|
# Remove ignored index (special tokens)
|
|
true_predictions = [
|
|
[label_list[p] for (p, l) in zip(pred, gold_label) if l != -100]
|
|
for pred, gold_label in zip(y_pred, y_true)
|
|
]
|
|
true_labels = [
|
|
[label_list[l] for (p, l) in zip(pred, gold_label) if l != -100]
|
|
for pred, gold_label in zip(y_pred, y_true)
|
|
]
|
|
return true_predictions, true_labels
|
|
|
|
def compute_metrics():
|
|
results = metric.compute()
|
|
if data_args.return_entity_level_metrics:
|
|
# Unpack nested dictionaries
|
|
final_results = {}
|
|
for key, value in results.items():
|
|
if isinstance(value, dict):
|
|
for n, v in value.items():
|
|
final_results[f"{key}_{n}"] = v
|
|
else:
|
|
final_results[key] = value
|
|
return final_results
|
|
else:
|
|
return {
|
|
"precision": results["overall_precision"],
|
|
"recall": results["overall_recall"],
|
|
"f1": results["overall_f1"],
|
|
"accuracy": results["overall_accuracy"],
|
|
}
|
|
|
|
# endregion
|
|
|
|
# region Training
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
|
|
logger.info(f" Total train batch size = {total_train_batch_size}")
|
|
# Only show the progress bar once on each machine.
|
|
model.fit(
|
|
tf_train_dataset,
|
|
validation_data=tf_eval_dataset,
|
|
epochs=int(training_args.num_train_epochs),
|
|
steps_per_epoch=train_batches_per_epoch,
|
|
validation_steps=eval_batches_per_epoch,
|
|
)
|
|
# endregion
|
|
|
|
# region Predictions
|
|
# For predictions, we preload the entire validation set - note that if you have a really giant validation
|
|
# set, you might need to change this!
|
|
eval_inputs = {key: tf.ragged.constant(eval_dataset[key]).to_tensor() for key in eval_dataset.features}
|
|
predictions = model.predict(eval_inputs, batch_size=training_args.per_device_eval_batch_size)["logits"]
|
|
predictions = tf.math.argmax(predictions, axis=-1)
|
|
labels = np.array(eval_inputs["labels"])
|
|
labels[np.array(eval_inputs["attention_mask"]) == 0] = -100
|
|
preds, refs = get_labels(predictions, labels)
|
|
metric.add_batch(
|
|
predictions=preds,
|
|
references=refs,
|
|
)
|
|
eval_metric = compute_metrics()
|
|
logger.info("Evaluation metrics:")
|
|
for key, val in eval_metric.items():
|
|
logger.info(f"{key}: {val:.4f}")
|
|
# endregion
|
|
|
|
# We don't do predictions in the strategy scope because there are some issues in there right now.
|
|
# They'll get fixed eventually, promise!
|
|
|
|
if training_args.output_dir is not None:
|
|
model.save_pretrained(training_args.output_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|