mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
509 lines
20 KiB
Python
Executable File
509 lines
20 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning the library models for sequence to sequence speech recognition.
|
|
"""
|
|
# You can also adapt this script on your own sequence to sequence speech
|
|
# recognition task. Pointers for this are left as comments.
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import datasets
|
|
import torch
|
|
from datasets import DatasetDict, load_dataset, load_metric
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoFeatureExtractor,
|
|
AutoModelForSpeechSeq2Seq,
|
|
AutoProcessor,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
Seq2SeqTrainer,
|
|
Seq2SeqTrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
|
from transformers.utils import check_min_version
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.18.0.dev0")
|
|
|
|
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
feature_extractor_name: Optional[str] = field(
|
|
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
|
"with private models)."
|
|
},
|
|
)
|
|
freeze_feature_encoder: bool = field(
|
|
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
dataset_name: str = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
text_column: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
audio_column_name: str = field(
|
|
default="audio",
|
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
|
)
|
|
text_column_name: str = field(
|
|
default="text",
|
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
|
)
|
|
max_duration_in_seconds: float = field(
|
|
default=20.0,
|
|
metadata={
|
|
"help": "Truncate audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
|
},
|
|
)
|
|
min_duration_in_seconds: float = field(
|
|
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
|
)
|
|
preprocessing_only: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether to only do data preprocessing and skip training. "
|
|
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
|
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
|
"so that the cached datasets can consequently be loaded in distributed training"
|
|
},
|
|
)
|
|
train_split_name: str = field(
|
|
default="train",
|
|
metadata={
|
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
|
},
|
|
)
|
|
eval_split_name: str = field(
|
|
default="test",
|
|
metadata={
|
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
|
},
|
|
)
|
|
do_lower_case: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether the target text should be lower cased."},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataCollatorSpeechSeq2SeqWithPadding:
|
|
"""
|
|
Data collator that will dynamically pad the inputs received.
|
|
Args:
|
|
processor ([`Wav2Vec2Processor`])
|
|
The processor used for proccessing the data.
|
|
decoder_start_token_id (`int`)
|
|
The begin-of-sentence of the decoder.
|
|
"""
|
|
|
|
processor: Any
|
|
decoder_start_token_id: int
|
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
|
# split inputs and labels since they have to be of different lenghts and need
|
|
# different padding methods
|
|
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
|
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
|
|
|
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
|
|
|
|
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
|
|
|
|
# replace padding with -100 to ignore loss correctly
|
|
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
|
|
|
# if bos token is appended in previous tokenization step,
|
|
# cut bos token here as it's append later anyways
|
|
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
|
|
labels = labels[:, 1:]
|
|
|
|
batch["labels"] = labels
|
|
|
|
return batch
|
|
|
|
|
|
def main():
|
|
# 1. Parse input arguments
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# 2. Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
|
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Set the verbosity to info of the Transformers logger (on main process only):
|
|
if is_main_process(training_args.local_rank):
|
|
transformers.utils.logging.set_verbosity_info()
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
|
|
# 3. Detecting last checkpoint and eventualy continue from last checkpoint
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# 4. Load dataset
|
|
raw_datasets = DatasetDict()
|
|
|
|
if training_args.do_train:
|
|
raw_datasets["train"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=data_args.train_split_name,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
if training_args.do_eval:
|
|
raw_datasets["eval"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=data_args.eval_split_name,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
|
|
raise ValueError(
|
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
|
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
|
|
)
|
|
|
|
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
|
|
raise ValueError(
|
|
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--text_column_name` to the correct text column - one of "
|
|
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
|
|
)
|
|
|
|
# 5. Load pretrained model, tokenizer, and feature extractor
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
|
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
if model.config.decoder_start_token_id is None:
|
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
|
|
|
if model_args.freeze_feature_encoder:
|
|
model.freeze_feature_encoder()
|
|
|
|
# 6. Resample speech dataset if necassary
|
|
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
|
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
|
raw_datasets = raw_datasets.cast_column(
|
|
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
|
)
|
|
|
|
# 7. Preprocessing the datasets.
|
|
# We need to read the audio files as arrays and tokenize the targets.
|
|
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
|
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
|
audio_column_name = data_args.audio_column_name
|
|
num_workers = data_args.preprocessing_num_workers
|
|
text_column_name = data_args.text_column_name
|
|
model_input_name = feature_extractor.model_input_names[0]
|
|
do_lower_case = data_args.do_lower_case
|
|
|
|
if data_args.max_train_samples is not None:
|
|
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
|
|
|
if data_args.max_eval_samples is not None:
|
|
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
|
|
|
def prepare_dataset(batch):
|
|
# process audio
|
|
sample = batch[audio_column_name]
|
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
|
# process audio length
|
|
batch[model_input_name] = inputs.input_values[0]
|
|
batch["input_length"] = len(batch["input_values"])
|
|
|
|
# process targets
|
|
input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
|
|
batch["labels"] = tokenizer(input_str).input_ids
|
|
return batch
|
|
|
|
with training_args.main_process_first(desc="dataset map pre-processing"):
|
|
vectorized_datasets = raw_datasets.map(
|
|
prepare_dataset,
|
|
remove_columns=next(iter(raw_datasets.values())).column_names,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
desc="preprocess train dataset",
|
|
)
|
|
|
|
# filter data that is shorter than min_input_length or longer than
|
|
# max_input_length
|
|
def is_audio_in_length_range(length):
|
|
return length > min_input_length and length < max_input_length
|
|
|
|
vectorized_datasets = vectorized_datasets.filter(
|
|
is_audio_in_length_range,
|
|
num_proc=num_workers,
|
|
input_columns=["input_length"],
|
|
)
|
|
|
|
# for large datasets it is advised to run the preprocessing on a
|
|
# single machine first with `args.preprocessing_only` since there will mostly likely
|
|
# be a timeout when running the script in distributed mode.
|
|
# In a second step `args.preprocessing_only` can then be set to `False` to load the
|
|
# cached dataset
|
|
if data_args.preprocessing_only:
|
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
|
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
|
|
return
|
|
|
|
# 8. Load Metric
|
|
metric = load_metric("wer")
|
|
|
|
def compute_metrics(pred):
|
|
pred_ids = pred.predictions
|
|
|
|
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
|
|
|
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
|
# we do not want to group tokens when computing the metrics
|
|
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
|
|
|
|
wer = metric.compute(predictions=pred_str, references=label_str)
|
|
|
|
return {"wer": wer}
|
|
|
|
# 9. Create a single speech processor
|
|
if is_main_process(training_args.local_rank):
|
|
# save feature extractor, tokenizer and config
|
|
feature_extractor.save_pretrained(training_args.output_dir)
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
config.save_pretrained(training_args.output_dir)
|
|
|
|
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
|
|
|
# 10. Define data collator
|
|
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
|
processor=processor, decoder_start_token_id=model.config.decoder_start_token_id
|
|
)
|
|
|
|
# 11. Initialize Trainer
|
|
trainer = Seq2SeqTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
|
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
|
tokenizer=feature_extractor,
|
|
data_collator=data_collator,
|
|
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
|
)
|
|
|
|
# 12. Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model() # Saves the feature extractor too for easy upload
|
|
|
|
metrics = train_result.metrics
|
|
max_train_samples = (
|
|
data_args.max_train_samples
|
|
if data_args.max_train_samples is not None
|
|
else len(vectorized_datasets["train"])
|
|
)
|
|
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
# 13. Evaluation
|
|
results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
metrics = trainer.evaluate(
|
|
metric_key_prefix="eval", max_length=model.config.max_length, num_beams=model.config.num_beams
|
|
)
|
|
max_eval_samples = (
|
|
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
|
)
|
|
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# 14. Write Training Stats
|
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "speech recognition"}
|
|
if data_args.dataset_name is not None:
|
|
kwargs["dataset_tags"] = data_args.dataset_name
|
|
if data_args.dataset_config_name is not None:
|
|
kwargs["dataset_args"] = data_args.dataset_config_name
|
|
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
|
else:
|
|
kwargs["dataset"] = data_args.dataset_name
|
|
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
return results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|