transformers/docs/source/model_doc/encoderdecoder.rst
Weizhen 2422cda01b
ProphetNet (#7157)
* add new model prophetnet

prophetnet modified

modify codes as suggested v1

add prophetnet test files

* still bugs, because of changed output formats of encoder and decoder

* move prophetnet into the latest version

* clean integration tests

* clean tokenizers

* add xlm config to init

* correct typo in init

* further refactoring

* continue refactor

* save parallel

* add decoder_attention_mask

* fix use_cache vs. past_key_values

* fix common tests

* change decoder output logits

* fix xlm tests

* make common tests pass

* change model architecture

* add tokenizer tests

* finalize model structure

* no weight mapping

* correct n-gram stream attention mask as discussed with qweizhen

* remove unused import

* fix index.rst

* fix tests

* delete unnecessary code

* add fast integration test

* rename weights

* final weight remapping

* save intermediate

* Descriptions for Prophetnet Config File

* finish all models

* finish new model outputs

* delete unnecessary files

* refactor encoder layer

* add dummy docs

* code quality

* fix tests

* add model pages to doctree

* further refactor

* more refactor, more tests

* finish code refactor and tests

* remove unnecessary files

* further clean up

* add docstring template

* finish tokenizer doc

* finish prophetnet

* fix copies

* fix typos

* fix tf tests

* fix fp16

* fix tf test 2nd try

* fix code quality

* add test for each model

* merge new tests to branch

* Update model_cards/microsoft/prophetnet-large-uncased-cnndm/README.md

Co-authored-by: Sam Shleifer <sshleifer@gmail.com>

* Update model_cards/microsoft/prophetnet-large-uncased-cnndm/README.md

Co-authored-by: Sam Shleifer <sshleifer@gmail.com>

* Update src/transformers/modeling_prophetnet.py

Co-authored-by: Sam Shleifer <sshleifer@gmail.com>

* Update utils/check_repo.py

Co-authored-by: Sam Shleifer <sshleifer@gmail.com>

* apply sams and sylvains comments

* make style

* remove unnecessary code

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/configuration_prophetnet.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* implement lysandres comments

* correct docs

* fix isort

* fix tokenizers

* fix copies

Co-authored-by: weizhen <weizhen@mail.ustc.edu.cn>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-10-19 17:36:09 +02:00

31 lines
1.5 KiB
ReStructuredText

Encoder Decoder Models
-----------------------------------------------------------------------------------------------------------------------
The :class:`~transformers.EncoderDecoderModel` can be used to initialize a sequence-to-sequence model with any
pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks
was shown in `Leveraging Pre-trained Checkpoints for Sequence Generation Tasks <https://arxiv.org/abs/1907.12461>`__ by
Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
After such an :class:`~transformers.EncoderDecoderModel` has been trained/fine-tuned, it can be saved/loaded just like
any other models (see the examples for more information).
An application of this architecture could be to leverage two pretrained :class:`~transformers.BertModel` as the encoder
and decoder for a summarization model as was shown in: `Text Summarization with Pretrained Encoders
<https://arxiv.org/abs/1908.08345>`__ by Yang Liu and Mirella Lapata.
EncoderDecoderConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.EncoderDecoderConfig
:members:
EncoderDecoderModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.EncoderDecoderModel
:members: forward, from_encoder_decoder_pretrained