transformers/examples/summarization/run_summarization.py
2019-12-09 20:37:55 -05:00

272 lines
7.9 KiB
Python

import argparse
from collections import namedtuple
import logging
import os
import sys
import torch
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm
from transformers import BertTokenizer
from modeling_bertabs import BertAbs, build_predictor
from utils_summarization import (
SummarizationDataset,
encode_for_summarization,
build_mask,
fit_to_block_size,
compute_token_type_ids,
)
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Batch = namedtuple(
"Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"]
)
def evaluate(args):
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True)
model = bertabs = BertAbs.from_pretrained(
"bertabs-finetuned-{}".format(args.finetuned_model)
)
bertabs.to(args.device)
bertabs.eval()
symbols = {
"BOS": tokenizer.vocab["[unused0]"],
"EOS": tokenizer.vocab["[unused1]"],
"PAD": tokenizer.vocab["[PAD]"],
}
# these (unused) arguments are defined to keep the compatibility
# with the legacy code and will be deleted in a next iteration.
args.result_path = ""
args.temp_dir = ""
data_iterator = build_data_iterator(args, tokenizer)
predictor = build_predictor(args, tokenizer, symbols, model)
logger.info("***** Running evaluation *****")
logger.info(" Number examples = %d", len(data_iterator.dataset))
logger.info(" Batch size = %d", args.batch_size)
logger.info("")
logger.info("***** Beam Search parameters *****")
logger.info(" Beam size = %d", args.beam_size)
logger.info(" Minimum length = %d", args.min_length)
logger.info(" Maximum length = %d", args.max_length)
logger.info(" Alpha (length penalty) = %.2f", args.alpha)
logger.info(" Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT"))
for batch in tqdm(data_iterator):
batch_data = predictor.translate_batch(batch)
translations = predictor.from_batch(batch_data)
summaries = [format_summary(t) for t in translations]
save_summaries(summaries, args.summaries_output_dir, batch.document_names)
def format_summary(translation):
""" Transforms the output of the `from_batch` function
into nicely formatted summaries.
"""
raw_summary, _, _ = translation
summary = (
raw_summary.replace("[unused0]", "")
.replace("[unused3]", "")
.replace("[PAD]", "")
.replace("[unused1]", "")
.replace(r" +", " ")
.replace(" [unused2] ", ". ")
.replace("[unused2]", "")
.strip()
)
return summary
def save_summaries(summaries, path, original_document_name):
""" Write the summaries in fies that are prefixed by the original
files' name with the `_summary` appended.
Attributes:
original_document_names: List[string]
Name of the document that was summarized.
path: string
Path were the summaries will be written
summaries: List[string]
The summaries that we produced.
"""
for summary, document_name in zip(summaries, original_document_name):
# Prepare the summary file's name
if "." in document_name:
bare_document_name = ".".join(document_name.split(".")[:-1])
extension = document_name.split(".")[-1]
name = bare_document_name + "_summary." + extension
else:
name = document_name + "_summary"
file_path = os.path.join(path, name)
with open(file_path, "w") as output:
output.write(summary)
#
# LOAD the dataset
#
def build_data_iterator(args, tokenizer):
dataset = load_and_cache_examples(args, tokenizer)
sampler = SequentialSampler(dataset)
collate_fn = lambda data: collate(data, tokenizer, block_size=512)
iterator = DataLoader(
dataset, sampler=sampler, batch_size=args.batch_size, collate_fn=collate_fn,
)
return iterator
def load_and_cache_examples(args, tokenizer):
dataset = SummarizationDataset(args.documents_dir)
return dataset
def collate(data, tokenizer, block_size):
""" Collate formats the data passed to the data loader.
In particular we tokenize the data batch after batch to avoid keeping them
all in memory. We output the data as a namedtuple to fit the original BertAbs's
API.
"""
data = [x for x in data if not len(x[1]) == 0] # remove empty_files
names = [name for name, _, _ in data]
encoded_text = [
encode_for_summarization(story, summary, tokenizer) for _, story, summary in data
]
stories = torch.tensor(
[
fit_to_block_size(story, block_size, tokenizer.pad_token_id)
for story, _ in encoded_text
]
)
encoder_token_type_ids = compute_token_type_ids(stories, tokenizer.cls_token_id)
encoder_mask = build_mask(stories, tokenizer.pad_token_id)
batch = Batch(
document_names=names,
batch_size=len(stories),
src=stories,
segs=encoder_token_type_ids,
mask_src=encoder_mask,
tgt_str=[""] * len(stories),
)
return batch
def decode_summary(summary_tokens, tokenizer):
""" Decode the summary and return it in a format
suitable for evaluation.
"""
summary_tokens = summary_tokens.to("cpu").numpy()
summary = tokenizer.decode(summary_tokens)
sentences = summary.split(".")
sentences = [s + "." for s in sentences]
return sentences
def main():
""" The main function defines the interface with the users.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--documents_dir",
default=None,
type=str,
required=True,
help="The folder where the documents to summarize are located.",
)
parser.add_argument(
"--summaries_output_dir",
default=None,
type=str,
required=True,
help="The folder in wich the summaries should be written.",
)
# EVALUATION options
parser.add_argument(
"--visible_gpus",
default=-1,
type=int,
help="Number of GPUs with which to do the training.",
)
parser.add_argument(
"--batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.",
)
# BEAM SEARCH arguments
parser.add_argument(
"--min_length",
default=50,
type=int,
help="Minimum number of tokens for the summaries.",
)
parser.add_argument(
"--max_length",
default=200,
type=int,
help="Maixmum number of tokens for the summaries.",
)
parser.add_argument(
"--beam_size",
default=5,
type=int,
help="The number of beams to start with for each example.",
)
parser.add_argument(
"--alpha",
default=0.95,
type=float,
help="The value of alpha for the length penalty in the beam search.",
)
parser.add_argument(
"--block_trigram",
default=True,
type=bool,
help="Whether to block the existence of repeating trigrams in the text generated by beam search.",
)
args = parser.parse_args()
args.device = torch.device("cpu") if args.visible_gpus == -1 else torch.device("cuda")
if not documents_dir_is_valid(args.documents_dir):
raise FileNotFoundError(
"We could not find the directory you specified for the documents to summarize, or it was empty. Please specify a valid path."
)
maybe_create_output_dir(args.summaries_output_dir)
evaluate(args)
def documents_dir_is_valid(path):
if not os.path.exists(path):
return False
file_list = os.listdir(path)
if len(file_list) == 0:
return False
return True
def maybe_create_output_dir(path):
if not os.path.exists(path):
os.makedirs(path)
if __name__ == "__main__":
main()