mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
182 lines
7.9 KiB
ReStructuredText
182 lines
7.9 KiB
ReStructuredText
..
|
|
Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
Converting Tensorflow Checkpoints
|
|
=======================================================================================================================
|
|
|
|
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints to models
|
|
that can be loaded using the ``from_pretrained`` methods of the library.
|
|
|
|
.. note::
|
|
Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) available in any
|
|
transformers >= 2.3.0 installation.
|
|
|
|
The documentation below reflects the **transformers-cli convert** command format.
|
|
|
|
BERT
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
You can convert any TensorFlow checkpoint for BERT (in particular `the pre-trained models released by Google
|
|
<https://github.com/google-research/bert#pre-trained-models>`_\ ) in a PyTorch save file by using the
|
|
:prefix_link:`convert_bert_original_tf_checkpoint_to_pytorch.py
|
|
<src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py>` script.
|
|
|
|
This CLI takes as input a TensorFlow checkpoint (three files starting with ``bert_model.ckpt``\ ) and the associated
|
|
configuration file (\ ``bert_config.json``\ ), and creates a PyTorch model for this configuration, loads the weights
|
|
from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that
|
|
can be imported using ``from_pretrained()`` (see example in :doc:`quicktour` , :prefix_link:`run_glue.py
|
|
<examples/pytorch/text-classification/run_glue.py>` \ ).
|
|
|
|
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow
|
|
checkpoint (the three files starting with ``bert_model.ckpt``\ ) but be sure to keep the configuration file (\
|
|
``bert_config.json``\ ) and the vocabulary file (\ ``vocab.txt``\ ) as these are needed for the PyTorch model too.
|
|
|
|
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (\ ``pip install
|
|
tensorflow``\ ). The rest of the repository only requires PyTorch.
|
|
|
|
Here is an example of the conversion process for a pre-trained ``BERT-Base Uncased`` model:
|
|
|
|
.. code-block:: shell
|
|
|
|
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
|
|
|
|
transformers-cli convert --model_type bert \
|
|
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
|
|
--config $BERT_BASE_DIR/bert_config.json \
|
|
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
|
|
|
|
You can download Google's pre-trained models for the conversion `here
|
|
<https://github.com/google-research/bert#pre-trained-models>`__.
|
|
|
|
ALBERT
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Convert TensorFlow model checkpoints of ALBERT to PyTorch using the
|
|
:prefix_link:`convert_albert_original_tf_checkpoint_to_pytorch.py
|
|
<src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py>` script.
|
|
|
|
The CLI takes as input a TensorFlow checkpoint (three files starting with ``model.ckpt-best``\ ) and the accompanying
|
|
configuration file (\ ``albert_config.json``\ ), then creates and saves a PyTorch model. To run this conversion you
|
|
will need to have TensorFlow and PyTorch installed.
|
|
|
|
Here is an example of the conversion process for the pre-trained ``ALBERT Base`` model:
|
|
|
|
.. code-block:: shell
|
|
|
|
export ALBERT_BASE_DIR=/path/to/albert/albert_base
|
|
|
|
transformers-cli convert --model_type albert \
|
|
--tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \
|
|
--config $ALBERT_BASE_DIR/albert_config.json \
|
|
--pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin
|
|
|
|
You can download Google's pre-trained models for the conversion `here
|
|
<https://github.com/google-research/albert#pre-trained-models>`__.
|
|
|
|
OpenAI GPT
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint
|
|
save as the same format than OpenAI pretrained model (see `here <https://github.com/openai/finetune-transformer-lm>`__\
|
|
)
|
|
|
|
.. code-block:: shell
|
|
|
|
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
|
|
|
|
transformers-cli convert --model_type gpt \
|
|
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
|
|
[--config OPENAI_GPT_CONFIG] \
|
|
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \
|
|
|
|
|
|
OpenAI GPT-2
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see `here
|
|
<https://github.com/openai/gpt-2>`__\ )
|
|
|
|
.. code-block:: shell
|
|
|
|
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights
|
|
|
|
transformers-cli convert --model_type gpt2 \
|
|
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
|
|
[--config OPENAI_GPT2_CONFIG] \
|
|
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
|
|
|
|
Transformer-XL
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Here is an example of the conversion process for a pre-trained Transformer-XL model (see `here
|
|
<https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models>`__\ )
|
|
|
|
.. code-block:: shell
|
|
|
|
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
|
|
|
|
transformers-cli convert --model_type transfo_xl \
|
|
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
|
|
[--config TRANSFO_XL_CONFIG] \
|
|
[--finetuning_task_name TRANSFO_XL_FINETUNED_TASK]
|
|
|
|
|
|
XLNet
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Here is an example of the conversion process for a pre-trained XLNet model:
|
|
|
|
.. code-block:: shell
|
|
|
|
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
|
|
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
|
|
|
|
transformers-cli convert --model_type xlnet \
|
|
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
|
|
--config $TRANSFO_XL_CONFIG_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
|
|
[--finetuning_task_name XLNET_FINETUNED_TASK] \
|
|
|
|
|
|
XLM
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Here is an example of the conversion process for a pre-trained XLM model:
|
|
|
|
.. code-block:: shell
|
|
|
|
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
|
|
|
|
transformers-cli convert --model_type xlm \
|
|
--tf_checkpoint $XLM_CHECKPOINT_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT
|
|
[--config XML_CONFIG] \
|
|
[--finetuning_task_name XML_FINETUNED_TASK]
|
|
|
|
|
|
T5
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Here is an example of the conversion process for a pre-trained T5 model:
|
|
|
|
.. code-block:: shell
|
|
|
|
export T5=/path/to/t5/uncased_L-12_H-768_A-12
|
|
|
|
transformers-cli convert --model_type t5 \
|
|
--tf_checkpoint $T5/t5_model.ckpt \
|
|
--config $T5/t5_config.json \
|
|
--pytorch_dump_output $T5/pytorch_model.bin
|