mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* first try * codestyle * idefics2 is happy * [run-slow] llava, llava_next, video_llava, vipllava, llava_next_video, idefics, idefics2, kosmos2, fuyu, blip, blip_2, instructblip, instructblipvideo, paligemma * fix-copies * [run-slow] llava, llava_next, video_llava, vipllava, llava_next_video, idefics, idefics2, kosmos2, fuyu, blip, blip_2, instructblip, instructblipvideo * blip-2 needs to init vision from config * when was this removed O_o * minor fix * tests * this way? * tests * model-agnostic code * codestyle * add tests for idefics * modify general test for VLMs * no generation test for vlm yet! * no generation test here also * wanr in VIT-SDPA if output attn * add more tests * user can pass dict as attn impl * repo consistency * update * muicgen * no prints * forgot speech enc-dec and clip * how many composite models we have? * musicgen meelody is same as mudicgen * +siglip * fix tests + add some more * remove idefics custom overriden code * make idefics2 automappable * nits * skip tests * doctests * Update src/transformers/models/idefics2/configuration_idefics2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update tests/models/clip/test_modeling_clip.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update tests/models/idefics2/test_modeling_idefics2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update tests/models/idefics2/test_modeling_idefics2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/configuration_utils.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * major update, no need for automap * clean up * add FA2 test * more tests * style * skip tests * why did these started failing now? * no attributes for FA2 needed * one tiny test * address comment about FA2 false warning * style * add new models and resolve conflicts * fix copies * let it be this way for now, come back tomorrow to review * some more fixes * update * more updates * update * fix copies * style and tests * another big update * fix tests * fix tests * update * another update * fix tests * fix copies * fix tests --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
1042 lines
42 KiB
Python
1042 lines
42 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch SigLIP model."""
|
|
|
|
import inspect
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import requests
|
|
from parameterized import parameterized
|
|
from pytest import mark
|
|
|
|
from transformers import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
|
|
from transformers.testing_utils import (
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_sdpa,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import (
|
|
is_torch_available,
|
|
is_torch_bf16_available_on_device,
|
|
is_torch_fp16_available_on_device,
|
|
is_torch_sdpa_available,
|
|
is_vision_available,
|
|
)
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import (
|
|
ModelTesterMixin,
|
|
_config_zero_init,
|
|
floats_tensor,
|
|
ids_tensor,
|
|
is_flaky,
|
|
random_attention_mask,
|
|
)
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import SiglipForImageClassification, SiglipModel, SiglipTextModel, SiglipVisionModel
|
|
|
|
if is_torch_sdpa_available():
|
|
from torch.nn.attention import SDPBackend, sdpa_kernel
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import SiglipProcessor
|
|
|
|
|
|
class SiglipModelTesterMixin(ModelTesterMixin):
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
# Load the model with SDPA
|
|
model_sdpa = model_class.from_pretrained(tmpdirname)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
# Load model with eager attention
|
|
model_eager = model_class.from_pretrained(
|
|
tmpdirname,
|
|
attn_implementation="eager",
|
|
)
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
|
|
# SigLip has one shared cls attr for all models, so we assign both submodels heer
|
|
vision_attn = text_attn = "sdpa" if model._supports_sdpa else "eager"
|
|
|
|
if hasattr(model_sdpa, "vision_model") and hasattr(model_sdpa, "text_model"):
|
|
self.assertTrue(model_sdpa.vision_model.config._attn_implementation == vision_attn)
|
|
self.assertTrue(model_sdpa.text_model.config._attn_implementation == text_attn)
|
|
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
|
|
self.assertTrue(model_eager.text_model.config._attn_implementation == "eager")
|
|
|
|
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
raise ValueError("The eager model should not have SDPA attention layers")
|
|
|
|
has_sdpa = False
|
|
for name, submodule in model_sdpa.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
has_sdpa = True
|
|
break
|
|
if not has_sdpa and model_sdpa.config.model_type != "falcon":
|
|
raise ValueError("The SDPA model should have SDPA attention layers")
|
|
|
|
def test_eager_matches_sdpa_inference(
|
|
self,
|
|
torch_dtype: str,
|
|
use_attention_mask_options: Tuple[bool, ...] = (True, False),
|
|
logit_keys: Tuple[str, ...] = ("logits_per_image", "logits_per_text", "image_embeds", "text_embeds"),
|
|
):
|
|
if not self.all_model_classes[0]._supports_sdpa:
|
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
|
|
|
|
if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
|
|
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
|
|
|
|
if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
|
|
self.skipTest(
|
|
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
|
|
)
|
|
|
|
# Convert to torch dtype
|
|
dtypes = {
|
|
"float16": torch.float16,
|
|
"bfloat16": torch.bfloat16,
|
|
"float32": torch.float32,
|
|
}
|
|
torch_dtype = dtypes[torch_dtype]
|
|
|
|
atols = {
|
|
torch.float32: 1e-5,
|
|
torch.bfloat16: 3e-2,
|
|
torch.float16: 5e-3,
|
|
}
|
|
rtols = {
|
|
torch.float32: 1e-4,
|
|
torch.bfloat16: 3e-2,
|
|
torch.float16: 5e-3,
|
|
}
|
|
|
|
atol = atols[torch_dtype]
|
|
rtol = rtols[torch_dtype]
|
|
|
|
def get_mean_reldiff(msg, current_case, x, ref, atol, rtol):
|
|
return f"{msg} {current_case}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
# Load the model with SDPA
|
|
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
# Load model with eager attention
|
|
model_eager = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch_dtype,
|
|
attn_implementation="eager",
|
|
)
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
|
|
# We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving the model each time,
|
|
# but it would be nicer to have an efficient way to use parameterized.expand
|
|
cases = [
|
|
(use_mask, output_attentions, sdpa_backend, batch_size)
|
|
for use_mask in use_attention_mask_options
|
|
for output_attentions in [True, False]
|
|
for sdpa_backend in [
|
|
SDPBackend.MATH,
|
|
[SDPBackend.FLASH_ATTENTION, SDPBackend.MATH],
|
|
[SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
|
|
[SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
|
|
]
|
|
for batch_size in [1, 5]
|
|
]
|
|
fail_cases = []
|
|
|
|
for use_mask, output_attentions, sdpa_backend, batch_size in cases:
|
|
processed_inputs = inputs_dict.copy()
|
|
|
|
# convert to torch_dtype
|
|
if "pixel_values" in processed_inputs:
|
|
processed_inputs["pixel_values"] = processed_inputs["pixel_values"].to(torch_dtype)
|
|
|
|
# slice for different batch sizes
|
|
for key in ["pixel_values", "input_ids", "attention_mask"]:
|
|
if key in processed_inputs:
|
|
processed_inputs[key] = processed_inputs[key][:batch_size]
|
|
|
|
# set attention mask with left padding
|
|
if not use_mask:
|
|
processed_inputs.pop("attention_mask", None)
|
|
else:
|
|
dummy_attention_mask = processed_inputs["attention_mask"]
|
|
dummy_attention_mask[:] = 1
|
|
dummy_attention_mask[:, :1] = 0
|
|
processed_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
processed_inputs["output_attentions"] = output_attentions
|
|
processed_inputs["output_hidden_states"] = True
|
|
|
|
current_case = (
|
|
f"padding_side=left, use_mask={use_mask}, batch_size={batch_size}, sdpa_backend={sdpa_backend}"
|
|
)
|
|
|
|
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
|
|
|
|
with torch.no_grad():
|
|
try:
|
|
with sdpa_kernel(sdpa_backend):
|
|
outputs_eager = model_eager(**prepared_inputs)
|
|
outputs_sdpa = model_sdpa(**prepared_inputs)
|
|
except Exception as e:
|
|
fail_cases.append(f"{current_case}: {e}")
|
|
continue
|
|
|
|
for key in logit_keys:
|
|
eager_logits = outputs_eager[key]
|
|
sdpa_logits = outputs_sdpa[key]
|
|
|
|
if use_mask:
|
|
eager_logits = eager_logits[:, 1:]
|
|
sdpa_logits = sdpa_logits[:, 1:]
|
|
|
|
is_close = torch.allclose(eager_logits, sdpa_logits, atol=atol, rtol=rtol)
|
|
if not is_close:
|
|
fail_cases.append(get_mean_reldiff(key, current_case, sdpa_logits, eager_logits, atol, rtol))
|
|
|
|
self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))
|
|
|
|
|
|
class SiglipVisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
# in ViT, the seq length equals the number of patches
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPVisionModelTester.prepare_config_and_inputs
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return SiglipVisionConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = SiglipVisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = (self.image_size, self.image_size)
|
|
patch_size = (self.patch_size, self.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPVisionModelTester.prepare_config_and_inputs_for_common
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class SiglipVisionModelTest(SiglipModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as SIGLIP does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (SiglipVisionModel,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
# MP works but offload doesn't work when the MultiheadAttention is offloaded
|
|
# TODO: One potential solution would be to add to set preload_module_classes = ["SiglipMultiheadAttentionPoolingHead"]
|
|
# in the dispatch_model function
|
|
test_cpu_offload = False
|
|
test_disk_offload_safetensors = False
|
|
test_disk_offload_bin = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = SiglipVisionModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=SiglipVisionConfig, has_text_modality=False, hidden_size=37
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="SIGLIP does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_get_set_embeddings(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipVisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipVisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "google/siglip-base-patch16-224"
|
|
model = SiglipVisionModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("pooler_output", "last_hidden_state"),
|
|
use_attention_mask_options=(False,),
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
class SiglipTextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTester.prepare_config_and_inputs
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
if input_mask is not None:
|
|
batch_size, seq_length = input_mask.shape
|
|
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
|
|
for batch_idx, start_index in enumerate(rnd_start_indices):
|
|
input_mask[batch_idx, :start_index] = 1
|
|
input_mask[batch_idx, start_index:] = 0
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask
|
|
|
|
def get_config(self):
|
|
return SiglipTextConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask):
|
|
model = SiglipTextModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTester.prepare_config_and_inputs_for_common
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, input_mask = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class SiglipTextModelTest(SiglipModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (SiglipTextModel,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
model_split_percents = [0.5, 0.8, 0.9]
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.setUp with CLIP->Siglip
|
|
def setUp(self):
|
|
self.model_tester = SiglipTextModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=SiglipTextConfig, hidden_size=37)
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_config
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_model
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="SiglipTextModel does not support standalone training")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipTextModel does not support standalone training")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipTextModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipTextModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip does not use inputs_embeds")
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_inputs_embeds
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipTextModel has no base class and is not available in MODEL_MAPPING")
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_save_load_fast_init_from_base
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipTextModel has no base class and is not available in MODEL_MAPPING")
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_save_load_fast_init_to_base
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "google/siglip-base-patch16-224"
|
|
model = SiglipTextModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("pooler_output", "last_hidden_state"),
|
|
use_attention_mask_options=(False, True),
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
class SiglipModelTester:
|
|
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
|
|
if text_kwargs is None:
|
|
text_kwargs = {}
|
|
if vision_kwargs is None:
|
|
vision_kwargs = {}
|
|
|
|
self.parent = parent
|
|
self.text_model_tester = SiglipTextModelTester(parent, **text_kwargs)
|
|
self.vision_model_tester = SiglipVisionModelTester(parent, **vision_kwargs)
|
|
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
|
|
self.is_training = is_training
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPModelTester.prepare_config_and_inputs
|
|
def prepare_config_and_inputs(self):
|
|
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
|
|
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, attention_mask, pixel_values
|
|
|
|
def get_config(self):
|
|
return SiglipConfig.from_text_vision_configs(
|
|
self.text_model_tester.get_config(),
|
|
self.vision_model_tester.get_config(),
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
|
|
model = SiglipModel(config).to(torch_device).eval()
|
|
with torch.no_grad():
|
|
result = model(input_ids, pixel_values, attention_mask)
|
|
self.parent.assertEqual(
|
|
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
|
|
)
|
|
self.parent.assertEqual(
|
|
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, attention_mask, pixel_values = config_and_inputs
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"pixel_values": pixel_values,
|
|
"return_loss": False,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class SiglipModelTest(SiglipModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (SiglipModel,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"feature-extraction": SiglipModel} if is_torch_available() else {}
|
|
fx_compatible = False
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_attention_outputs = False
|
|
# MP works but offload doesn't work when the MultiheadAttention is offloaded
|
|
# TODO: One potential solution would be to add to set preload_module_classes = ["SiglipMultiheadAttentionPoolingHead"]
|
|
# in the dispatch_model function
|
|
test_cpu_offload = False
|
|
test_disk_offload_safetensors = False
|
|
test_disk_offload_bin = False
|
|
_is_composite = True
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.setUp with CLIP->Siglip
|
|
def setUp(self):
|
|
self.model_tester = SiglipModelTester(self)
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_model
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests")
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_hidden_states_output
|
|
def test_hidden_states_output(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_inputs_embeds
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests")
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_retain_grad_hidden_states_attentions
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipModel does not have input/output embeddings")
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_model_get_set_embeddings
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPModelTest._create_and_check_torchscript with CLIP->Siglip
|
|
def _create_and_check_torchscript(self, config, inputs_dict):
|
|
if not self.test_torchscript:
|
|
self.skipTest(reason="test_torchscript is set to False")
|
|
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init.torchscript = True
|
|
configs_no_init.return_dict = False
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
try:
|
|
input_ids = inputs_dict["input_ids"]
|
|
pixel_values = inputs_dict["pixel_values"] # Siglip needs pixel_values
|
|
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
|
|
except RuntimeError:
|
|
self.fail("Couldn't trace module.")
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
|
|
|
|
try:
|
|
torch.jit.save(traced_model, pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't save module.")
|
|
|
|
try:
|
|
loaded_model = torch.jit.load(pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't load module.")
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
loaded_model.to(torch_device)
|
|
loaded_model.eval()
|
|
|
|
model_state_dict = model.state_dict()
|
|
loaded_model_state_dict = loaded_model.state_dict()
|
|
|
|
non_persistent_buffers = {}
|
|
for key in loaded_model_state_dict.keys():
|
|
if key not in model_state_dict.keys():
|
|
non_persistent_buffers[key] = loaded_model_state_dict[key]
|
|
|
|
loaded_model_state_dict = {
|
|
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
|
|
}
|
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
|
|
|
|
model_buffers = list(model.buffers())
|
|
for non_persistent_buffer in non_persistent_buffers.values():
|
|
found_buffer = False
|
|
for i, model_buffer in enumerate(model_buffers):
|
|
if torch.equal(non_persistent_buffer, model_buffer):
|
|
found_buffer = True
|
|
break
|
|
|
|
self.assertTrue(found_buffer)
|
|
model_buffers.pop(i)
|
|
|
|
models_equal = True
|
|
for layer_name, p1 in model_state_dict.items():
|
|
p2 = loaded_model_state_dict[layer_name]
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
# Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_load_vision_text_config with CLIP->Siglip
|
|
def test_load_vision_text_config(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# Save SiglipConfig and check if we can load SiglipVisionConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
vision_config = SiglipVisionConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
|
|
|
|
# Save SiglipConfig and check if we can load SiglipTextConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
text_config = SiglipTextConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "google/siglip-base-patch16-224"
|
|
model = SiglipModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence(self):
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_fa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
|
|
)
|
|
model_fa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
|
|
model.to(torch_device)
|
|
|
|
dummy_pixel_values = inputs_dict["pixel_values"].to(torch.bfloat16)
|
|
dummy_input_ids = inputs_dict["input_ids"]
|
|
|
|
outputs = model(pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True)
|
|
outputs_fa = model_fa(
|
|
pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(outputs.logits_per_image, outputs_fa.logits_per_image, atol=4e-2, rtol=4e-2),
|
|
f"Image logits max diff: {torch.max(torch.abs(outputs.logits_per_image - outputs_fa.logits_per_image))}",
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(outputs.logits_per_text, outputs_fa.logits_per_text, atol=4e-2, rtol=4e-2),
|
|
f"Text logits max diff: {torch.max(torch.abs(outputs.logits_per_text - outputs_fa.logits_per_text))}",
|
|
)
|
|
|
|
# Test with attention mask
|
|
dummy_attention_mask = inputs_dict["attention_mask"]
|
|
|
|
if dummy_attention_mask is not None:
|
|
dummy_attention_mask[:, 1:] = 1
|
|
dummy_attention_mask[:, :1] = 0
|
|
|
|
outputs = model(
|
|
pixel_values=dummy_pixel_values,
|
|
input_ids=dummy_input_ids,
|
|
attention_mask=dummy_attention_mask,
|
|
output_hidden_states=True,
|
|
)
|
|
outputs_fa = model_fa(
|
|
pixel_values=dummy_pixel_values,
|
|
input_ids=dummy_input_ids,
|
|
attention_mask=dummy_attention_mask,
|
|
output_hidden_states=True,
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(outputs.logits_per_image, outputs_fa.logits_per_image, atol=4e-2, rtol=4e-2),
|
|
f"Logits max diff: {torch.max(torch.abs(outputs.logits_per_image - outputs_fa.logits_per_image))}",
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(outputs.logits_per_text, outputs_fa.logits_per_text, atol=4e-2, rtol=4e-2),
|
|
f"Logits max diff: {torch.max(torch.abs(outputs.logits_per_text - outputs_fa.logits_per_text))}",
|
|
)
|
|
|
|
# check with inference + dropout
|
|
model.train()
|
|
_ = model_fa(
|
|
pixel_values=dummy_pixel_values,
|
|
input_ids=dummy_input_ids,
|
|
attention_mask=dummy_attention_mask,
|
|
output_hidden_states=True,
|
|
)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest("SigLIP does not support right padding")
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("logits_per_image", "logits_per_text", "image_embeds", "text_embeds"),
|
|
use_attention_mask_options=(False, True),
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
class SiglipForImageClassificationModelTester(SiglipModelTester):
|
|
def __init__(self, parent):
|
|
super().__init__(parent)
|
|
self.batch_size = self.vision_model_tester.batch_size
|
|
self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
|
|
self.hidden_size = self.vision_model_tester.hidden_size
|
|
self.seq_length = self.vision_model_tester.seq_length
|
|
|
|
def prepare_config_and_inputs(self):
|
|
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class SiglipForImageClassificationModelTest(SiglipModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (SiglipForImageClassification,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"image-classification": SiglipForImageClassification} if is_torch_available() else {}
|
|
fx_compatible = False
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_attention_outputs = False
|
|
# MP works but offload doesn't work when the MultiheadAttention is offloaded
|
|
# TODO: One potential solution would be to add to set preload_module_classes = ["SiglipMultiheadAttentionPoolingHead"]
|
|
# in the dispatch_model function
|
|
test_cpu_offload = False
|
|
test_disk_offload_safetensors = False
|
|
test_disk_offload_bin = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = SiglipForImageClassificationModelTester(self)
|
|
|
|
@unittest.skip(reason="SiglipForImageClassification does not support inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipForImageClassification does not support inputs_embeds")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype, logit_keys=("logits",), use_attention_mask_options=(False,)
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
return image
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
class SiglipModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference(self):
|
|
model_name = "google/siglip-base-patch16-224"
|
|
model = SiglipModel.from_pretrained(model_name).to(torch_device)
|
|
processor = SiglipProcessor.from_pretrained(model_name)
|
|
|
|
image = prepare_img()
|
|
inputs = processor(
|
|
text=["a photo of 2 cats", "a photo of 2 dogs"], images=image, padding="max_length", return_tensors="pt"
|
|
).to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits_per_image = outputs.logits_per_image
|
|
logits_per_text = outputs.logits_per_text
|
|
|
|
# verify the logits
|
|
self.assertEqual(
|
|
logits_per_image.shape,
|
|
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
|
|
)
|
|
self.assertEqual(
|
|
logits_per_text.shape,
|
|
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
|
|
)
|
|
|
|
expected_logits = torch.tensor([[-0.7567, -10.3354]], device=torch_device)
|
|
|
|
self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))
|
|
|
|
# verify the probs
|
|
probs = torch.sigmoid(logits_per_image) # these are the probabilities
|
|
expected_probs = torch.tensor([[3.1937e-01, 3.2463e-05]], device=torch_device)
|
|
self.assertTrue(torch.allclose(probs, expected_probs, atol=1e-3))
|
|
|
|
@slow
|
|
def test_inference_interpolate_pos_encoding(self):
|
|
model_name = "google/siglip-base-patch16-224"
|
|
model = SiglipModel.from_pretrained(model_name).to(torch_device)
|
|
|
|
# 640 x 480 image
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
processor = SiglipProcessor.from_pretrained(model_name, do_resize=False, size={"height": 480, "width": 640})
|
|
|
|
inputs = processor(text="what's in the image", images=image, return_tensors="pt").to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, interpolate_pos_encoding=True)
|
|
|
|
# verify the shape
|
|
# patch size = 16
|
|
# batch size 1, (640/16) * (480/16) = 1200 patches, 768 hidden size
|
|
expected_shape = torch.Size((1, 1200, 768))
|
|
|
|
self.assertEqual(outputs.vision_model_output.last_hidden_state.shape, expected_shape)
|