mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* fix UT failures on XPU w/ stock PyTorch 2.7 & 2.8 Signed-off-by: YAO Matrix <matrix.yao@intel.com> * zamba2 Signed-off-by: YAO Matrix <matrix.yao@intel.com> * xx Signed-off-by: YAO Matrix <matrix.yao@intel.com> * internvl Signed-off-by: YAO Matrix <matrix.yao@intel.com> * tp cases Signed-off-by: YAO Matrix <matrix.yao@intel.com> --------- Signed-off-by: YAO Matrix <matrix.yao@intel.com>
122 lines
5.0 KiB
Python
122 lines
5.0 KiB
Python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Llama4 model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import (
|
|
Expectations,
|
|
cleanup,
|
|
require_read_token,
|
|
require_torch_large_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Llama4ForConditionalGeneration,
|
|
Llama4Processor,
|
|
)
|
|
|
|
|
|
@slow
|
|
@require_torch_large_accelerator
|
|
@require_read_token
|
|
class Llama4IntegrationTest(unittest.TestCase):
|
|
model_id = "meta-llama/Llama-4-Scout-17B-16E"
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = Llama4ForConditionalGeneration.from_pretrained(
|
|
"meta-llama/Llama-4-Scout-17B-16E",
|
|
device_map="auto",
|
|
torch_dtype=torch.float32,
|
|
attn_implementation="eager",
|
|
)
|
|
|
|
def setUp(self):
|
|
self.processor = Llama4Processor.from_pretrained("meta-llama/Llama-4-Scout-17B-16E", padding_side="left")
|
|
|
|
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
|
|
self.messages_1 = [
|
|
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "url": url},
|
|
{"type": "text", "text": "What is shown in this image?"},
|
|
],
|
|
},
|
|
]
|
|
|
|
self.messages_2 = [
|
|
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image",
|
|
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
|
|
},
|
|
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
|
|
{"type": "text", "text": "Are these images identical?"},
|
|
],
|
|
},
|
|
]
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
def test_model_17b_16e_fp16(self):
|
|
EXPECTED_TEXTS = Expectations(
|
|
{
|
|
("xpu", 3): ['system\n\nYou are a helpful assistant.user\n\nWhat is shown in this image?assistant\n\nThe image shows a cow standing on a beach with a blue sky and a body of water in the background. The cow is brown with a white face'],
|
|
("cuda", None): ['system\n\nYou are a helpful assistant.user\n\nWhat is shown in this image?assistant\n\nThe image shows a cow standing on a beach, with a blue sky and a body of water in the background. The cow is brown with a white'],
|
|
}
|
|
) # fmt: skip
|
|
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
|
|
|
|
inputs = self.processor.apply_chat_template(
|
|
self.messages_1, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True
|
|
).to(device=torch_device, dtype=self.model.dtype)
|
|
output = self.model.generate(**inputs, max_new_tokens=30, do_sample=False)
|
|
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
|
|
|
|
print(output_text)
|
|
self.assertEqual(output_text, EXPECTED_TEXT)
|
|
|
|
def test_model_17b_16e_batch(self):
|
|
inputs = self.processor.apply_chat_template(
|
|
[self.messages_1, self.messages_2],
|
|
tokenize=True,
|
|
return_dict=True,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
add_generation_prompt=True,
|
|
).to(device=torch_device, dtype=torch.float32)
|
|
|
|
output = self.model.generate(**inputs, max_new_tokens=30, do_sample=False)
|
|
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
|
|
|
|
EXPECTED_TEXTS = [
|
|
'system\n\nYou are a helpful assistant.user\n\nWhat is shown in this image?assistant\n\nThe image shows a cow standing on a beach, with a blue sky and a body of water in the background. The cow is brown with a white',
|
|
'system\n\nYou are a helpful assistant.user\n\nAre these images identical?assistant\n\nNo, these images are not identical. The first image shows a cow standing on a beach with a blue sky and a white cloud in the background.'
|
|
] # fmt: skip
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|