transformers/tests/pipelines/test_pipelines_image_text_to_text.py
Yoni Gozlan 203e27059b
Add image text to text pipeline (#34170)
* Standardize image-text-to-text-models-output

add post_process_image_text_to_text to chameleon and cleanup

Fix legacy kwarg behavior and deprecation warning

add post_process_image_text_to_text to qwen2_vl and llava_onevision

Add post_process_image_text_to_text to idefics3, mllama, pixtral processor

* nit var name post_process_image_text_to_text udop

* nit fix deprecation warnings

* Add image-text-to-text pipeline

* add support for image url in chat template for pipeline

* Reformat to be fully compatible with chat templates

* Add tests chat template

* Fix imports and tests

* Add pipeline tag

* change logic handling of single prompt ans multiple images

* add pipeline mapping to models

* fix batched inference

* fix tests

* Add manual batching for preprocessing

* Fix outputs with nested images

* Add support for all common processing kwargs

* Add default padding when multiple text inputs (batch size>1)

* nit change version deprecation warning

* Add support for text only inference

* add chat_template warnings

* Add pipeline tests and add copied from post process function

* Fix batched pipeline tests

* nit

* Fix pipeline tests blip2

* remove unnecessary max_new_tokens

* revert processing kosmos2 and remove unnecessary max_new_tokens

* fix pipeline tests idefics

* Force try loading processor if pipeline supports it

* revert load_processor change

* hardcode loading only processor

* remove unnecessary try except

* skip imagetexttotext tests for kosmos2 as tiny model causes problems

* Make code clearer

* Address review comments

* remove preprocessing logic from pipeline

* fix fuyu

* add BC resize fuyu

* Move post_process_image_text_to_text to ProcessorMixin

* add guard in post_process

* fix zero shot object detection pipeline

* add support for generator input in pipeline

* nit

* change default image-text-to-text model to llava onevision

* fix owlv2 size dict

* Change legacy deprecation warning to only show when True
2024-10-31 15:48:11 -04:00

261 lines
9.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING, is_vision_available
from transformers.pipelines import ImageTextToTextPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
class ImageTextToTextPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING
def get_test_pipeline(self, model, tokenizer, processor, image_processor, torch_dtype="float32"):
pipe = ImageTextToTextPipeline(model=model, processor=processor, torch_dtype=torch_dtype)
image_token = getattr(processor.tokenizer, "image_token", "")
examples = [
{
"images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"text": f"{image_token}This is a ",
},
{
"images": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"text": f"{image_token}Here I see a ",
},
]
return pipe, examples
def run_pipeline_test(self, pipe, examples):
outputs = pipe(examples[0].get("images"), text=examples[0].get("text"))
self.assertEqual(
outputs,
[
{"input_text": ANY(str), "generated_text": ANY(str)},
],
)
@require_torch
def test_small_model_pt_token(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
text = "<image> What this is? Assistant: This is"
outputs = pipe(image, text=text)
self.assertEqual(
outputs,
[
{
"input_text": "<image> What this is? Assistant: This is",
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
}
],
)
outputs = pipe([image, image], text=[text, text])
self.assertEqual(
outputs,
[
{
"input_text": "<image> What this is? Assistant: This is",
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
},
{
"input_text": "<image> What this is? Assistant: This is",
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
},
],
)
@require_torch
def test_consistent_batching_behaviour(self):
pipe = pipeline("image-text-to-text", model="microsoft/kosmos-2-patch14-224")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe([image, image], text=[prompt, prompt])
outputs_batched = pipe([image, image], text=[prompt, prompt], batch_size=2)
self.assertEqual(outputs, outputs_batched)
@slow
@require_torch
def test_model_pt_chat_template(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
image_ny = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
image_chicago = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg"
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between these two images?"},
{"type": "image"},
{"type": "image"},
],
}
]
outputs = pipe([image_ny, image_chicago], text=messages)
self.assertEqual(
outputs,
[
{
"input_text": [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between these two images?"},
{"type": "image"},
{"type": "image"},
],
}
],
"generated_text": [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between these two images?"},
{"type": "image"},
{"type": "image"},
],
},
{
"role": "assistant",
"content": "The first image shows a statue of the Statue of Liberty in the foreground, while the second image shows",
},
],
}
],
)
@slow
@require_torch
def test_model_pt_chat_template_continue_final_message(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "There is a dog and"},
],
},
]
outputs = pipe(text=messages)
self.assertEqual(
outputs,
[
{
"input_text": [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
},
{"role": "assistant", "content": [{"type": "text", "text": "There is a dog and"}]},
],
"generated_text": [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "There is a dog and a person in the image. The dog is sitting on the sand, and the person is sitting on",
}
],
},
],
}
],
)
@slow
@require_torch
def test_model_pt_chat_template_new_text(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
outputs = pipe(text=messages, return_full_text=False)
self.assertEqual(
outputs,
[
{
"input_text": [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
],
"generated_text": "In the image, a woman is sitting on the sandy beach, her legs crossed in a relaxed manner",
}
],
)