transformers/tests/models/llava_next/test_modeling_llava_next.py
Yoni Gozlan 203e27059b
Add image text to text pipeline (#34170)
* Standardize image-text-to-text-models-output

add post_process_image_text_to_text to chameleon and cleanup

Fix legacy kwarg behavior and deprecation warning

add post_process_image_text_to_text to qwen2_vl and llava_onevision

Add post_process_image_text_to_text to idefics3, mllama, pixtral processor

* nit var name post_process_image_text_to_text udop

* nit fix deprecation warnings

* Add image-text-to-text pipeline

* add support for image url in chat template for pipeline

* Reformat to be fully compatible with chat templates

* Add tests chat template

* Fix imports and tests

* Add pipeline tag

* change logic handling of single prompt ans multiple images

* add pipeline mapping to models

* fix batched inference

* fix tests

* Add manual batching for preprocessing

* Fix outputs with nested images

* Add support for all common processing kwargs

* Add default padding when multiple text inputs (batch size>1)

* nit change version deprecation warning

* Add support for text only inference

* add chat_template warnings

* Add pipeline tests and add copied from post process function

* Fix batched pipeline tests

* nit

* Fix pipeline tests blip2

* remove unnecessary max_new_tokens

* revert processing kosmos2 and remove unnecessary max_new_tokens

* fix pipeline tests idefics

* Force try loading processor if pipeline supports it

* revert load_processor change

* hardcode loading only processor

* remove unnecessary try except

* skip imagetexttotext tests for kosmos2 as tiny model causes problems

* Make code clearer

* Address review comments

* remove preprocessing logic from pipeline

* fix fuyu

* add BC resize fuyu

* Move post_process_image_text_to_text to ProcessorMixin

* add guard in post_process

* fix zero shot object detection pipeline

* add support for generator input in pipeline

* nit

* change default image-text-to-text model to llava onevision

* fix owlv2 size dict

* Change legacy deprecation warning to only show when True
2024-10-31 15:48:11 -04:00

689 lines
29 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Llava-NeXT model."""
import unittest
import requests
from huggingface_hub import hf_hub_download
from transformers import (
AutoProcessor,
LlavaNextConfig,
LlavaNextForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
cleanup,
require_bitsandbytes,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
)
if is_torch_available():
import torch
from transformers.models.llava_next.modeling_llava_next import image_size_to_num_patches
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
class LlavaNextVisionText2TextModelTester:
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=0,
projector_hidden_act="gelu",
seq_length=7,
vision_feature_select_strategy="default",
vision_feature_layer=-1,
text_config={
"model_type": "llama",
"seq_length": 7,
"is_training": True,
"use_input_mask": True,
"use_token_type_ids": False,
"use_labels": True,
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 580,
"type_vocab_size": 16,
"type_sequence_label_size": 2,
"initializer_range": 0.02,
"num_labels": 3,
"num_choices": 4,
"pad_token_id": 1,
},
is_training=True,
vision_config={
"image_size": 16,
"patch_size": 4,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"projection_dim": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.text_config = text_config
self.vision_config = vision_config
self.pad_token_id = text_config["pad_token_id"]
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = 3
self.image_size = 30
self.encoder_seq_length = 95
self.image_grid_pinpoints = [[32, 32]]
self.num_image_tokens = 88
self.seq_length = seq_length + self.num_image_tokens
def get_config(self):
return LlavaNextConfig(
text_config=self.text_config,
vision_config=self.vision_config,
ignore_index=self.ignore_index,
image_token_index=self.image_token_index,
projector_hidden_act=self.projector_hidden_act,
vision_feature_select_strategy=self.vision_feature_select_strategy,
vision_feature_layer=self.vision_feature_layer,
image_grid_pinpoints=self.image_grid_pinpoints,
image_seq_length=self.num_image_tokens,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
5,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 2) + 2
attention_mask = torch.ones(input_ids.shape, dtype=torch.long).to(torch_device)
input_ids[input_ids == config.image_token_index] = self.pad_token_id
input_ids[:, : self.num_image_tokens] = config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"image_sizes": torch.tensor(
[[self.vision_config["image_size"], self.vision_config["image_size"]]] * self.batch_size
),
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
def create_and_check_llava_next_model_fp16_forward(
self, config, input_ids, pixel_values, attention_mask, image_sizes
):
model = LlavaNextForConditionalGeneration(config=config)
model.to(torch_device)
model.half()
model.eval()
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_sizes=image_sizes,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
def create_and_check_llava_next_model_fp16_autocast_forward(
self, config, input_ids, pixel_values, attention_mask, image_sizes
):
config.torch_dtype = torch.float16
model = LlavaNextForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type="cuda", dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_sizes=image_sizes,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class LlavaNextForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `LlavaNextForConditionalGeneration`.
"""
all_model_classes = (LlavaNextForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (LlavaNextForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = {"image-text-to-text": LlavaNextForConditionalGeneration} if is_torch_available() else {}
test_pruning = False
test_head_masking = False
_is_composite = True
def setUp(self):
self.model_tester = LlavaNextVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=LlavaNextConfig, has_text_modality=False)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if "image_newline" in name:
continue
elif param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
self.assertTrue(torch.allclose(out_embeds, out_ids))
def test_mismatching_num_image_tokens(self):
"""
Tests that VLMs through an error with explicit message saying what is wrong
when number of images don't match number of image tokens in the text.
Also we need to test multi-image cases when one prompr has multiple image tokens.
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config).to(torch_device)
_ = model(**input_dict) # successfull forward with no modifications
# remove one image but leave the image token in text
input_dict["pixel_values"] = input_dict["pixel_values"][-1:, ...]
input_dict["image_sizes"] = input_dict["image_sizes"][-1:, ...]
with self.assertRaises(ValueError):
_ = model(**input_dict)
# simulate multi-image case by concatenating inputs where each has exactly one image/image-token
input_ids = input_dict["input_ids"][:1]
pixel_values = input_dict["pixel_values"][:1]
image_sizes = input_dict["image_sizes"][:1]
input_ids = torch.cat([input_ids, input_ids], dim=0)
# one image and two image tokens raise an error
with self.assertRaises(ValueError):
_ = model(input_ids=input_ids, pixel_values=pixel_values, image_sizes=image_sizes)
# two images and two image tokens don't raise an error
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
image_sizes = torch.cat([image_sizes, image_sizes], dim=0)
_ = model(input_ids=input_ids, pixel_values=pixel_values, image_sizes=image_sizes)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Feedforward chunking is not yet supported")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="CPU offload is not yet supported")
def test_cpu_offload(self):
pass
@unittest.skip(reason="Compile not yet supported because in LLava models")
def test_sdpa_can_compile_dynamic(self):
pass
@unittest.skip(reason="Compile not yet supported because in LLava models")
def test_sdpa_can_dispatch_on_flash(self):
pass
@unittest.skip("FlashAttention only support fp16 and bf16 data type")
def test_flash_attn_2_fp32_ln(self):
pass
@unittest.skip(
"VLMs need lots of steps to prepare images/mask correctly to get pad-free inputs. Can be tested as part of LLM test"
)
def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
pass
@require_torch
class LlavaNextForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
self.image = Image.open(requests.get(url, stream=True).raw)
self.prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
def tearDown(self):
cleanup(torch_device, gc_collect=True)
@slow
@require_bitsandbytes
def test_small_model_integration_test(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
inputs = self.processor(images=self.image, text=self.prompt, return_tensors="pt")
# verify inputs against original implementation
filepath = hf_hub_download(
repo_id="nielsr/test-image",
filename="llava_1_6_input_ids.pt",
repo_type="dataset",
)
original_input_ids = torch.load(filepath, map_location="cpu")
# replace -200 by image_token_index (since we use token ID = 32000 for the image token)
original_input_ids[original_input_ids == -200] = model.config.image_token_index
assert original_input_ids[0].tolist() == inputs.input_ids[0].tolist()
filepath = hf_hub_download(
repo_id="nielsr/test-image",
filename="llava_1_6_pixel_values.pt",
repo_type="dataset",
)
original_pixel_values = torch.load(filepath, map_location="cpu")
assert torch.allclose(original_pixel_values, inputs.pixel_values.half())
# verify single forward pass
inputs = inputs.to(torch_device)
with torch.no_grad():
output = model(**inputs)
expected_slice = torch.tensor(
[[-4.7695, -4.5664, -0.2788], [-10.6172, -10.8828, -2.5273], [-6.7383, -7.2422, -0.6694]],
dtype=torch.float32,
device=torch_device,
)
assert torch.allclose(output.logits[0, :3, :3], expected_slice, atol=1e-3)
# verify generation
output = model.generate(**inputs, max_new_tokens=100)
EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays values for multiple quantitative variables represented on axes starting from the same point. This particular radar chart is showing the performance of various models or systems across different metrics or datasets.\n\nThe chart is divided into several sections, each representing a different model or dataset. The axes represent different metrics or datasets, such as "MMM-Vet," "MMM-Bench," "L' # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_batch(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
cats_image = Image.open(requests.get(url, stream=True).raw)
inputs = self.processor(
images=[self.image, cats_image],
text=[self.prompt, self.prompt],
return_tensors="pt",
padding=True,
).to(torch_device)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ['[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays', '[INST] \nWhat is shown in this image? [/INST] The image shows two cats lying on a pink surface, which appears to be a couch or a cush'] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_unk_token(self):
# related to (#29835)
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
prompt_with_unk = "[INST] <image>\nWhat is shown in this <unk> image? [/INST]"
inputs = self.processor(images=self.image, text=prompt_with_unk, return_tensors="pt")
# verify single forward pass
inputs = inputs.to(torch_device)
with torch.no_grad():
output = model(**inputs)
# verify generation
output = model.generate(**inputs, max_new_tokens=40)
EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays values for multiple quantitative variables represented on axes starting from the same point. This particular radar chart' # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_batch_different_resolutions(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e"
cats_image = Image.open(requests.get(url, stream=True).raw)
lowres_img = Image.open(requests.get(lowres_url, stream=True).raw)
inputs = self.processor(
images=[lowres_img, cats_image], text=[self.prompt, self.prompt], return_tensors="pt", padding=True
).to(torch_device)
pixel_values = inputs["pixel_values"]
# verify pixel values are padded correctly with 0 when one image has more num_patches than the other
image_num_patches = [
image_size_to_num_patches(
image_size=imsize,
grid_pinpoints=model.config.image_grid_pinpoints,
patch_size=model.config.vision_config.image_size,
)
for imsize in inputs["image_sizes"]
]
for pix_val, num_patch in zip(pixel_values, image_num_patches):
self.assertTrue(torch.all(pix_val[num_patch:] == 0)) # pad on the right
for i in range(num_patch):
self.assertFalse(torch.all(pix_val[i : i + 1] == 0)) # no padding expected in any of patches
# check loss when labels are passed
inputs["labels"] = inputs["input_ids"].clone()
with torch.no_grad():
output = model(**inputs)
expected_slice = torch.tensor(
[[-0.1287, -0.1294, -0.1284], [-0.2744, -0.2698, -0.2671], [-0.1071, -0.1091, -0.1056]],
dtype=torch.float32,
device=torch_device,
)
assert torch.allclose(output.logits[0, -3:, -3:], expected_slice, atol=1e-3)
assert torch.allclose(output.loss, torch.tensor(7.0206, device=torch_device), atol=1e-3)
# verify generation
output = model.generate(**inputs, max_new_tokens=50)
EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image shows two deer, likely fawns, in a grassy area with trees in the background. The setting appears to be a forest or woodland, and the photo is taken during what seems to be either dawn or dusk, given' # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_batch_matches_single(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e"
cats_image = Image.open(requests.get(url, stream=True).raw)
lowres_img = Image.open(requests.get(lowres_url, stream=True).raw)
inputs_batched = self.processor(
images=[lowres_img, cats_image], text=[self.prompt, self.prompt], return_tensors="pt", padding=True
).to(torch_device)
inputs_single = self.processor(images=lowres_img, text=self.prompt, return_tensors="pt", padding=True).to(
torch_device
)
# verify generation
output_batched = model.generate(**inputs_batched, max_new_tokens=50)
output_single = model.generate(**inputs_single, max_new_tokens=50)
self.assertEqual(
self.processor.decode(output_batched[0], skip_special_tokens=True),
self.processor.decode(output_single[0], skip_special_tokens=True),
)
@slow
@require_bitsandbytes
def test_padding_side_when_merging_inputs(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e"
cats_image = Image.open(requests.get(url, stream=True).raw)
lowres_img = Image.open(requests.get(lowres_url, stream=True).raw)
inputs_batched = self.processor(
images=[lowres_img, cats_image], text=[self.prompt, self.prompt], return_tensors="pt", padding=True
).to(torch_device)
# model is in eval mode by default so we should get pad on the left side
# we can check the first hidden-states (aka inputs embeds)
# the first element was lo-res image and we expect the first 732 tokens to be all pads
with torch.no_grad():
output_eval = model(**inputs_batched, output_hidden_states=True)
self.assertTrue((output_eval.hidden_states[0][0, :732, ...] == 0).all().item())
with self.assertLogs("transformers", level="WARNING") as logs:
model.padding_side = "left"
model.train()
with torch.no_grad():
model(**inputs_batched, output_hidden_states=True)
self.assertIn("Padding side is set to 'left' but the model is in training mode. For training", logs)
with self.assertLogs("transformers", level="WARNING") as logs:
model.padding_side = "right"
model.eval()
with torch.no_grad():
model(**inputs_batched, output_hidden_states=True)
self.assertIn("Padding side is set to 'right' but the model is in inference mode. For correct", logs)
@slow
@require_bitsandbytes
def test_expansion_in_processing_multiimage(self):
model_id = "llava-hf/llava-v1.6-mistral-7b-hf"
model = LlavaNextForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
prompt = "USER: <image><image>\nDescribe the similarity between the two images:\nASSISTANT:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
deer_image = Image.open(
requests.get(
"https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e",
stream=True,
).raw
)
# check processing with expansion of inputs
processor.vision_feature_select_strategy = "default"
processor.patch_size = 14
inputs_expanded = processor(text=prompt, images=[raw_image, deer_image], return_tensors="pt").to(
torch_device, torch.float16
)
self.assertTrue(inputs_expanded.input_ids.shape[-1] == 3969)
# check processing without expansion of inputs (legacy behavior)
processor.vision_feature_select_strategy = None
processor.patch_size = None
inputs = processor(text=prompt, images=[raw_image, deer_image], return_tensors="pt").to(
torch_device, torch.float16
)
self.assertTrue(inputs.input_ids.shape[-1] == 23)
# generate exactly 20 tokens
output = model.generate(**inputs, min_new_tokens=20, max_new_tokens=20)
output_expanded = model.generate(**inputs_expanded, min_new_tokens=20, max_new_tokens=20)
# check that both inputs are handled correctly and generate the same output
self.assertListEqual(output_expanded[:, -20:].tolist(), output[:, -20:].tolist())
@slow
@require_bitsandbytes
def test_expansion_in_processing(self):
model_id = "llava-hf/llava-v1.6-mistral-7b-hf"
model = LlavaNextForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
prompt = "USER: <image>\nDescribe the image:\nASSISTANT:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
# check processing with expansion of inputs
processor.vision_feature_select_strategy = "default"
processor.patch_size = 14
inputs_expanded = processor(images=raw_image, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
self.assertTrue(inputs_expanded.input_ids.shape[-1] == 2356)
# check processing without expansion of inputs (legacy behavior)
processor.vision_feature_select_strategy = None
processor.patch_size = None
inputs = processor(images=raw_image, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
self.assertTrue(inputs.input_ids.shape[-1] == 17)
# generate exactly 20 tokens
output = model.generate(**inputs, min_new_tokens=20, max_new_tokens=20)
output_expanded = model.generate(**inputs_expanded, min_new_tokens=20, max_new_tokens=20)
# check that both inputs are handled correctly and generate the same output
self.assertListEqual(output_expanded[:, -20:].tolist(), output[:, -20:].tolist())
@slow
@require_bitsandbytes
def test_small_model_integration_test_full_vision_state_selection(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
# test that changing `strategy` won't error out
model.vision_feature_select_strategy = "full"
inputs = self.processor(self.prompt, self.image, return_tensors="pt")
# verify generation
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays values for multiple quantitative variables represented on axes' # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)