mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* fix * fix * fix * fix --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
97 lines
4.0 KiB
Python
97 lines
4.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import tempfile
|
|
import unittest
|
|
from functools import lru_cache
|
|
|
|
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
|
|
from transformers.testing_utils import require_rjieba, require_tokenizers
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin, use_cache_if_possible
|
|
|
|
|
|
@require_rjieba
|
|
@require_tokenizers
|
|
class RoFormerTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "junnyu/roformer_chinese_small"
|
|
tokenizer_class = RoFormerTokenizer
|
|
rust_tokenizer_class = RoFormerTokenizerFast
|
|
space_between_special_tokens = True
|
|
test_rust_tokenizer = True
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
super().setUpClass()
|
|
tokenizer = cls.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base")
|
|
tokenizer.save_pretrained(cls.tmpdirname)
|
|
|
|
@classmethod
|
|
@use_cache_if_possible
|
|
@lru_cache(maxsize=64)
|
|
def get_tokenizer(cls, pretrained_name=None, **kwargs):
|
|
pretrained_name = pretrained_name or cls.tmpdirname
|
|
return cls.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
@classmethod
|
|
@use_cache_if_possible
|
|
@lru_cache(maxsize=64)
|
|
def get_rust_tokenizer(cls, pretrained_name=None, **kwargs):
|
|
pretrained_name = pretrained_name or cls.tmpdirname
|
|
return cls.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
def get_chinese_input_output_texts(self):
|
|
input_text = "永和服装饰品有限公司,今天天气非常好"
|
|
output_text = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好"
|
|
return input_text, output_text
|
|
|
|
def test_tokenizer(self):
|
|
tokenizer = self.get_tokenizer()
|
|
input_text, output_text = self.get_chinese_input_output_texts()
|
|
tokens = tokenizer.tokenize(input_text)
|
|
|
|
self.assertListEqual(tokens, output_text.split())
|
|
|
|
input_tokens = tokens + [tokenizer.unk_token]
|
|
exp_tokens = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), exp_tokens)
|
|
|
|
def test_rust_tokenizer(self): # noqa: F811
|
|
tokenizer = self.get_rust_tokenizer()
|
|
input_text, output_text = self.get_chinese_input_output_texts()
|
|
tokens = tokenizer.tokenize(input_text)
|
|
self.assertListEqual(tokens, output_text.split())
|
|
input_tokens = tokens + [tokenizer.unk_token]
|
|
exp_tokens = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), exp_tokens)
|
|
|
|
@unittest.skip(reason="Cannot train new tokenizer via Tokenizers lib")
|
|
def test_training_new_tokenizer(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Cannot train new tokenizer via Tokenizers lib")
|
|
def test_training_new_tokenizer_with_special_tokens_change(self):
|
|
pass
|
|
|
|
def test_save_slow_from_fast_and_reload_fast(self):
|
|
for cls in [RoFormerTokenizer, RoFormerTokenizerFast]:
|
|
original = cls.from_pretrained("alchemab/antiberta2")
|
|
self.assertEqual(original.encode("生活的真谛是"), [1, 4, 4, 4, 4, 4, 4, 2])
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
original.save_pretrained(tmp_dir)
|
|
new = cls.from_pretrained(tmp_dir)
|
|
self.assertEqual(new.encode("生活的真谛是"), [1, 4, 4, 4, 4, 4, 4, 2])
|