mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 19:18:24 +06:00
592 lines
20 KiB
Python
592 lines
20 KiB
Python
#! /usr/bin/env python3
|
|
# coding=utf-8
|
|
|
|
# This code is licensed under a non-commercial license.
|
|
|
|
import argparse
|
|
import csv
|
|
import json
|
|
import math
|
|
import time
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.optim
|
|
import torch.optim as optim
|
|
import torch.utils.data as data
|
|
from nltk.tokenize.treebank import TreebankWordDetokenizer
|
|
from torchtext import data as torchtext_data
|
|
from torchtext import datasets
|
|
from tqdm import tqdm, trange
|
|
|
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
|
|
|
torch.manual_seed(0)
|
|
np.random.seed(0)
|
|
EPSILON = 1e-10
|
|
example_sentence = "This is incredible! I love it, this is the best chicken I have ever had."
|
|
max_length_seq = 100
|
|
|
|
|
|
class ClassificationHead(torch.nn.Module):
|
|
"""Classification Head for transformer encoders"""
|
|
|
|
def __init__(self, class_size, embed_size):
|
|
super(ClassificationHead, self).__init__()
|
|
self.class_size = class_size
|
|
self.embed_size = embed_size
|
|
# self.mlp1 = torch.nn.Linear(embed_size, embed_size)
|
|
# self.mlp2 = (torch.nn.Linear(embed_size, class_size))
|
|
self.mlp = torch.nn.Linear(embed_size, class_size)
|
|
|
|
def forward(self, hidden_state):
|
|
# hidden_state = F.relu(self.mlp1(hidden_state))
|
|
# hidden_state = self.mlp2(hidden_state)
|
|
logits = self.mlp(hidden_state)
|
|
return logits
|
|
|
|
|
|
class Discriminator(torch.nn.Module):
|
|
"""Transformer encoder followed by a Classification Head"""
|
|
|
|
def __init__(
|
|
self,
|
|
class_size,
|
|
pretrained_model="gpt2-medium",
|
|
cached_mode=False,
|
|
device='cpu'
|
|
):
|
|
super(Discriminator, self).__init__()
|
|
self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
|
|
self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model)
|
|
self.embed_size = self.encoder.transformer.config.hidden_size
|
|
self.classifier_head = ClassificationHead(
|
|
class_size=class_size,
|
|
embed_size=self.embed_size
|
|
)
|
|
self.cached_mode = cached_mode
|
|
self.device = device
|
|
|
|
def get_classifier(self):
|
|
return self.classifier_head
|
|
|
|
def train_custom(self):
|
|
for param in self.encoder.parameters():
|
|
param.requires_grad = False
|
|
self.classifier_head.train()
|
|
|
|
def avg_representation(self, x):
|
|
mask = x.ne(0).unsqueeze(2).repeat(
|
|
1, 1, self.embed_size
|
|
).float().to(self.device).detach()
|
|
hidden, _ = self.encoder.transformer(x)
|
|
masked_hidden = hidden * mask
|
|
avg_hidden = torch.sum(masked_hidden, dim=1) / (
|
|
torch.sum(mask, dim=1).detach() + EPSILON
|
|
)
|
|
return avg_hidden
|
|
|
|
def forward(self, x):
|
|
if self.cached_mode:
|
|
avg_hidden = x.to(self.device)
|
|
else:
|
|
avg_hidden = self.avg_representation(x.to(self.device))
|
|
|
|
logits = self.classifier_head(avg_hidden)
|
|
probs = F.log_softmax(logits, dim=-1)
|
|
|
|
return probs
|
|
|
|
|
|
class Dataset(data.Dataset):
|
|
def __init__(self, X, y):
|
|
"""Reads source and target sequences from txt files."""
|
|
self.X = X
|
|
self.y = y
|
|
|
|
def __len__(self):
|
|
return len(self.X)
|
|
|
|
def __getitem__(self, index):
|
|
"""Returns one data pair (source and target)."""
|
|
data = {}
|
|
data["X"] = self.X[index]
|
|
data["y"] = self.y[index]
|
|
return data
|
|
|
|
|
|
def collate_fn(data):
|
|
def pad_sequences(sequences):
|
|
lengths = [len(seq) for seq in sequences]
|
|
|
|
padded_sequences = torch.zeros(
|
|
len(sequences),
|
|
max(lengths)
|
|
).long() # padding value = 0
|
|
|
|
for i, seq in enumerate(sequences):
|
|
end = lengths[i]
|
|
padded_sequences[i, :end] = seq[:end]
|
|
|
|
return padded_sequences, lengths
|
|
|
|
item_info = {}
|
|
for key in data[0].keys():
|
|
item_info[key] = [d[key] for d in data]
|
|
|
|
x_batch, _ = pad_sequences(item_info["X"])
|
|
y_batch = torch.tensor(item_info["y"], dtype=torch.long)
|
|
|
|
return x_batch, y_batch
|
|
|
|
|
|
def cached_collate_fn(data):
|
|
item_info = {}
|
|
for key in data[0].keys():
|
|
item_info[key] = [d[key] for d in data]
|
|
|
|
x_batch = torch.cat(item_info["X"], 0)
|
|
y_batch = torch.tensor(item_info["y"], dtype=torch.long)
|
|
|
|
return x_batch, y_batch
|
|
|
|
|
|
def train_epoch(data_loader, discriminator, optimizer,
|
|
epoch=0, log_interval=10, device='cpu'):
|
|
samples_so_far = 0
|
|
discriminator.train_custom()
|
|
for batch_idx, (input_t, target_t) in enumerate(data_loader):
|
|
input_t, target_t = input_t.to(device), target_t.to(device)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
output_t = discriminator(input_t)
|
|
loss = F.nll_loss(output_t, target_t)
|
|
loss.backward(retain_graph=True)
|
|
optimizer.step()
|
|
|
|
samples_so_far += len(input_t)
|
|
|
|
if batch_idx % log_interval == 0:
|
|
print(
|
|
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
|
|
epoch + 1,
|
|
samples_so_far, len(data_loader.dataset),
|
|
100 * samples_so_far / len(data_loader.dataset), loss.item()
|
|
)
|
|
)
|
|
|
|
|
|
def evaluate_performance(data_loader, discriminator, device='cpu'):
|
|
discriminator.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
with torch.no_grad():
|
|
for input_t, target_t in data_loader:
|
|
input_t, target_t = input_t.to(device), target_t.to(device)
|
|
output_t = discriminator(input_t)
|
|
# sum up batch loss
|
|
test_loss += F.nll_loss(output_t, target_t, reduction="sum").item()
|
|
# get the index of the max log-probability
|
|
pred_t = output_t.argmax(dim=1, keepdim=True)
|
|
correct += pred_t.eq(target_t.view_as(pred_t)).sum().item()
|
|
|
|
test_loss /= len(data_loader.dataset)
|
|
|
|
print(
|
|
"Performance on test set: "
|
|
"Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format(
|
|
test_loss, correct, len(data_loader.dataset),
|
|
100. * correct / len(data_loader.dataset)
|
|
)
|
|
)
|
|
|
|
|
|
def predict(input_sentence, model, classes, cached=False, device='cpu'):
|
|
input_t = model.tokenizer.encode(input_sentence)
|
|
input_t = torch.tensor([input_t], dtype=torch.long, device=device)
|
|
if cached:
|
|
input_t = model.avg_representation(input_t)
|
|
|
|
log_probs = model(input_t).data.cpu().numpy().flatten().tolist()
|
|
print("Input sentence:", input_sentence)
|
|
print("Predictions:", ", ".join(
|
|
"{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in
|
|
zip(classes, log_probs)
|
|
))
|
|
|
|
|
|
def get_cached_data_loader(dataset, batch_size, discriminator,
|
|
shuffle=False, device='cpu'):
|
|
data_loader = torch.utils.data.DataLoader(dataset=dataset,
|
|
batch_size=batch_size,
|
|
collate_fn=collate_fn)
|
|
|
|
xs = []
|
|
ys = []
|
|
for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)):
|
|
with torch.no_grad():
|
|
x = x.to(device)
|
|
avg_rep = discriminator.avg_representation(x).cpu().detach()
|
|
avg_rep_list = torch.unbind(avg_rep.unsqueeze(1))
|
|
xs += avg_rep_list
|
|
ys += y.cpu().numpy().tolist()
|
|
|
|
data_loader = torch.utils.data.DataLoader(
|
|
dataset=Dataset(xs, ys),
|
|
batch_size=batch_size,
|
|
shuffle=shuffle,
|
|
collate_fn=cached_collate_fn)
|
|
|
|
return data_loader
|
|
|
|
|
|
def train_discriminator(
|
|
dataset, dataset_fp=None, pretrained_model="gpt2-medium",
|
|
epochs=10, batch_size=64, log_interval=10,
|
|
save_model=False, cached=False, no_cuda=False):
|
|
device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
|
|
|
|
print("Preprocessing {} dataset...".format(dataset))
|
|
start = time.time()
|
|
|
|
if dataset == "SST":
|
|
idx2class = ["positive", "negative", "very positive", "very negative",
|
|
"neutral"]
|
|
class2idx = {c: i for i, c in enumerate(idx2class)}
|
|
|
|
discriminator = Discriminator(
|
|
class_size=len(idx2class),
|
|
pretrained_model=pretrained_model,
|
|
cached_mode=cached,
|
|
device=device
|
|
).to(device)
|
|
|
|
text = torchtext_data.Field()
|
|
label = torchtext_data.Field(sequential=False)
|
|
train_data, val_data, test_data = datasets.SST.splits(
|
|
text,
|
|
label,
|
|
fine_grained=True,
|
|
train_subtrees=True,
|
|
)
|
|
|
|
x = []
|
|
y = []
|
|
for i in trange(len(train_data), ascii=True):
|
|
seq = TreebankWordDetokenizer().detokenize(
|
|
vars(train_data[i])["text"]
|
|
)
|
|
seq = discriminator.tokenizer.encode(seq)
|
|
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
|
|
x.append(seq)
|
|
y.append(class2idx[vars(train_data[i])["label"]])
|
|
train_dataset = Dataset(x, y)
|
|
|
|
test_x = []
|
|
test_y = []
|
|
for i in trange(len(test_data), ascii=True):
|
|
seq = TreebankWordDetokenizer().detokenize(
|
|
vars(test_data[i])["text"]
|
|
)
|
|
seq = discriminator.tokenizer.encode(seq)
|
|
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
|
|
test_x.append(seq)
|
|
test_y.append(class2idx[vars(test_data[i])["label"]])
|
|
test_dataset = Dataset(test_x, test_y)
|
|
|
|
discriminator_meta = {
|
|
"class_size": len(idx2class),
|
|
"embed_size": discriminator.embed_size,
|
|
"pretrained_model": pretrained_model,
|
|
"class_vocab": class2idx,
|
|
"default_class": 2,
|
|
}
|
|
|
|
elif dataset == "clickbait":
|
|
idx2class = ["non_clickbait", "clickbait"]
|
|
class2idx = {c: i for i, c in enumerate(idx2class)}
|
|
|
|
discriminator = Discriminator(
|
|
class_size=len(idx2class),
|
|
pretrained_model=pretrained_model,
|
|
cached_mode=cached,
|
|
device=device
|
|
).to(device)
|
|
|
|
with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
|
|
data = []
|
|
for i, line in enumerate(f):
|
|
try:
|
|
data.append(eval(line))
|
|
except:
|
|
print("Error evaluating line {}: {}".format(
|
|
i, line
|
|
))
|
|
continue
|
|
x = []
|
|
y = []
|
|
with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
|
|
for i, line in enumerate(tqdm(f, ascii=True)):
|
|
try:
|
|
d = eval(line)
|
|
seq = discriminator.tokenizer.encode(d["text"])
|
|
|
|
if len(seq) < max_length_seq:
|
|
seq = torch.tensor(
|
|
[50256] + seq, device=device, dtype=torch.long
|
|
)
|
|
else:
|
|
print("Line {} is longer than maximum length {}".format(
|
|
i, max_length_seq
|
|
))
|
|
continue
|
|
x.append(seq)
|
|
y.append(d["label"])
|
|
except:
|
|
print("Error evaluating / tokenizing"
|
|
" line {}, skipping it".format(i))
|
|
pass
|
|
|
|
full_dataset = Dataset(x, y)
|
|
train_size = int(0.9 * len(full_dataset))
|
|
test_size = len(full_dataset) - train_size
|
|
train_dataset, test_dataset = torch.utils.data.random_split(
|
|
full_dataset, [train_size, test_size]
|
|
)
|
|
|
|
discriminator_meta = {
|
|
"class_size": len(idx2class),
|
|
"embed_size": discriminator.embed_size,
|
|
"pretrained_model": pretrained_model,
|
|
"class_vocab": class2idx,
|
|
"default_class": 1,
|
|
}
|
|
|
|
elif dataset == "toxic":
|
|
idx2class = ["non_toxic", "toxic"]
|
|
class2idx = {c: i for i, c in enumerate(idx2class)}
|
|
|
|
discriminator = Discriminator(
|
|
class_size=len(idx2class),
|
|
pretrained_model=pretrained_model,
|
|
cached_mode=cached,
|
|
device=device
|
|
).to(device)
|
|
|
|
x = []
|
|
y = []
|
|
with open("datasets/toxic/toxic_train.txt") as f:
|
|
for i, line in enumerate(tqdm(f, ascii=True)):
|
|
try:
|
|
d = eval(line)
|
|
seq = discriminator.tokenizer.encode(d["text"])
|
|
|
|
if len(seq) < max_length_seq:
|
|
seq = torch.tensor(
|
|
[50256] + seq, device=device, dtype=torch.long
|
|
)
|
|
else:
|
|
print("Line {} is longer than maximum length {}".format(
|
|
i, max_length_seq
|
|
))
|
|
continue
|
|
x.append(seq)
|
|
y.append(int(np.sum(d["label"]) > 0))
|
|
except:
|
|
print("Error evaluating / tokenizing"
|
|
" line {}, skipping it".format(i))
|
|
pass
|
|
|
|
full_dataset = Dataset(x, y)
|
|
train_size = int(0.9 * len(full_dataset))
|
|
test_size = len(full_dataset) - train_size
|
|
train_dataset, test_dataset = torch.utils.data.random_split(
|
|
full_dataset, [train_size, test_size]
|
|
)
|
|
|
|
discriminator_meta = {
|
|
"class_size": len(idx2class),
|
|
"embed_size": discriminator.embed_size,
|
|
"pretrained_model": pretrained_model,
|
|
"class_vocab": class2idx,
|
|
"default_class": 0,
|
|
}
|
|
|
|
else: # if dataset == "generic":
|
|
# This assumes the input dataset is a TSV with the following structure:
|
|
# class \t text
|
|
|
|
if dataset_fp is None:
|
|
raise ValueError("When generic dataset is selected, "
|
|
"dataset_fp needs to be specified aswell.")
|
|
|
|
classes = set()
|
|
with open(dataset_fp) as f:
|
|
csv_reader = csv.reader(f, delimiter="\t")
|
|
for row in tqdm(csv_reader, ascii=True):
|
|
if row:
|
|
classes.add(row[0])
|
|
|
|
idx2class = sorted(classes)
|
|
class2idx = {c: i for i, c in enumerate(idx2class)}
|
|
|
|
discriminator = Discriminator(
|
|
class_size=len(idx2class),
|
|
pretrained_model=pretrained_model,
|
|
cached_mode=cached,
|
|
device=device
|
|
).to(device)
|
|
|
|
x = []
|
|
y = []
|
|
with open(dataset_fp) as f:
|
|
csv_reader = csv.reader(f, delimiter="\t")
|
|
for i, row in enumerate(tqdm(csv_reader, ascii=True)):
|
|
if row:
|
|
label = row[0]
|
|
text = row[1]
|
|
|
|
try:
|
|
seq = discriminator.tokenizer.encode(text)
|
|
if (len(seq) < max_length_seq):
|
|
seq = torch.tensor(
|
|
[50256] + seq,
|
|
device=device,
|
|
dtype=torch.long
|
|
)
|
|
|
|
else:
|
|
print(
|
|
"Line {} is longer than maximum length {}".format(
|
|
i, max_length_seq
|
|
))
|
|
continue
|
|
|
|
x.append(seq)
|
|
y.append(class2idx[label])
|
|
|
|
except:
|
|
print("Error tokenizing line {}, skipping it".format(i))
|
|
pass
|
|
|
|
full_dataset = Dataset(x, y)
|
|
train_size = int(0.9 * len(full_dataset))
|
|
test_size = len(full_dataset) - train_size
|
|
train_dataset, test_dataset = torch.utils.data.random_split(
|
|
full_dataset,
|
|
[train_size, test_size]
|
|
)
|
|
|
|
discriminator_meta = {
|
|
"class_size": len(idx2class),
|
|
"embed_size": discriminator.embed_size,
|
|
"pretrained_model": pretrained_model,
|
|
"class_vocab": class2idx,
|
|
"default_class": 0,
|
|
}
|
|
|
|
end = time.time()
|
|
print("Preprocessed {} data points".format(
|
|
len(train_dataset) + len(test_dataset))
|
|
)
|
|
print("Data preprocessing took: {:.3f}s".format(end - start))
|
|
|
|
if cached:
|
|
print("Building representation cache...")
|
|
|
|
start = time.time()
|
|
|
|
train_loader = get_cached_data_loader(
|
|
train_dataset, batch_size, discriminator,
|
|
shuffle=True, device=device
|
|
)
|
|
|
|
test_loader = get_cached_data_loader(
|
|
test_dataset, batch_size, discriminator, device=device
|
|
)
|
|
|
|
end = time.time()
|
|
print("Building representation cache took: {:.3f}s".format(end - start))
|
|
|
|
else:
|
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
collate_fn=collate_fn)
|
|
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
|
|
batch_size=batch_size,
|
|
collate_fn=collate_fn)
|
|
|
|
if save_model:
|
|
with open("{}_classifier_head_meta.json".format(dataset),
|
|
"w") as meta_file:
|
|
json.dump(discriminator_meta, meta_file)
|
|
|
|
optimizer = optim.Adam(discriminator.parameters(), lr=0.0001)
|
|
|
|
for epoch in range(epochs):
|
|
start = time.time()
|
|
print("\nEpoch", epoch + 1)
|
|
|
|
train_epoch(
|
|
discriminator=discriminator,
|
|
data_loader=train_loader,
|
|
optimizer=optimizer,
|
|
epoch=epoch,
|
|
log_interval=log_interval,
|
|
device=device
|
|
)
|
|
evaluate_performance(
|
|
data_loader=test_loader,
|
|
discriminator=discriminator,
|
|
device=device
|
|
)
|
|
|
|
end = time.time()
|
|
print("Epoch took: {:.3f}s".format(end - start))
|
|
|
|
print("\nExample prediction")
|
|
predict(example_sentence, discriminator, idx2class,
|
|
cached=cached, device=device)
|
|
|
|
if save_model:
|
|
# torch.save(discriminator.state_dict(),
|
|
# "{}_discriminator_{}.pt".format(
|
|
# args.dataset, epoch + 1
|
|
# ))
|
|
torch.save(discriminator.get_classifier().state_dict(),
|
|
"{}_classifier_head_epoch_{}.pt".format(dataset,
|
|
epoch + 1))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="Train a discriminator on top of GPT-2 representations")
|
|
parser.add_argument("--dataset", type=str, default="SST",
|
|
choices=("SST", "clickbait", "toxic", "generic"),
|
|
help="dataset to train the discriminator on."
|
|
"In case of generic, the dataset is expected"
|
|
"to be a TSBV file with structure: class \\t text")
|
|
parser.add_argument("--dataset_fp", type=str, default="",
|
|
help="File path of the dataset to use. "
|
|
"Needed only in case of generic datadset")
|
|
parser.add_argument("--pretrained_model", type=str, default="gpt2-medium",
|
|
help="Pretrained model to use as encoder")
|
|
parser.add_argument("--epochs", type=int, default=10, metavar="N",
|
|
help="Number of training epochs")
|
|
parser.add_argument("--batch_size", type=int, default=64, metavar="N",
|
|
help="input batch size for training (default: 64)")
|
|
parser.add_argument("--log_interval", type=int, default=10, metavar="N",
|
|
help="how many batches to wait before logging training status")
|
|
parser.add_argument("--save_model", action="store_true",
|
|
help="whether to save the model")
|
|
parser.add_argument("--cached", action="store_true",
|
|
help="whether to cache the input representations")
|
|
parser.add_argument("--no_cuda", action="store_true",
|
|
help="use to turn off cuda")
|
|
args = parser.parse_args()
|
|
|
|
train_discriminator(**(vars(args)))
|