mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* aqlm init * calibration and dtypes * docs * Readme update * is_aqlm_available * Simpler link in docs * Test TODO real reference * init _import_structure fix * AqlmConfig autodoc * integration aqlm * integrations in tests * docstring fix * legacy typing * Less typings * More kernels information * Performance -> Accuracy * correct tests * remoced multi-gpu test * Update docs/source/en/quantization.md Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> * Update src/transformers/utils/quantization_config.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Brought back multi-gpu tests * Update src/transformers/integrations/aqlm.py Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update tests/quantization/aqlm_integration/test_aqlm.py Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> --------- Co-authored-by: Andrei Panferov <blacksamorez@yandex-team.ru> Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
184 lines
6.6 KiB
Python
184 lines
6.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import AqlmConfig, AutoConfig, AutoModelForCausalLM, AutoTokenizer, OPTForCausalLM
|
|
from transformers.testing_utils import (
|
|
require_accelerate,
|
|
require_aqlm,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_accelerate_available, is_torch_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_accelerate_available():
|
|
from accelerate import init_empty_weights
|
|
|
|
|
|
@require_torch_gpu
|
|
class AqlmConfigTest(unittest.TestCase):
|
|
def test_to_dict(self):
|
|
"""
|
|
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
|
|
"""
|
|
quantization_config = AqlmConfig()
|
|
config_to_dict = quantization_config.to_dict()
|
|
|
|
for key in config_to_dict:
|
|
self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
|
|
|
|
def test_from_dict(self):
|
|
"""
|
|
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
|
|
"""
|
|
dict = {
|
|
"in_group_size": 32,
|
|
"num_codebooks": 8,
|
|
"nbits_per_codebook": 8,
|
|
"linear_weights_not_to_quantize": ["lm_head.weight"],
|
|
}
|
|
quantization_config = AqlmConfig.from_dict(dict)
|
|
|
|
self.assertEqual(dict["in_group_size"], quantization_config.in_group_size)
|
|
self.assertEqual(dict["num_codebooks"], quantization_config.num_codebooks)
|
|
self.assertEqual(dict["nbits_per_codebook"], quantization_config.nbits_per_codebook)
|
|
self.assertEqual(dict["linear_weights_not_to_quantize"], quantization_config.linear_weights_not_to_quantize)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_aqlm
|
|
@require_accelerate
|
|
class AqlmTest(unittest.TestCase):
|
|
model_name = "BlackSamorez/Mixtral-8x7b-AQLM-2Bit-1x16-hf-test-dispatch"
|
|
|
|
input_text = "Hello my name is"
|
|
|
|
EXPECTED_OUTPUT = "Hello my name is Katie and I am a 20 year old student at the University of North Carolina at Chapel Hill. I am currently a sophomore and am majoring in Psychology. I am"
|
|
|
|
device_map = "cuda"
|
|
|
|
# called only once for all test in this class
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
"""
|
|
Setup quantized model
|
|
"""
|
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
|
|
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
|
|
cls.model_name,
|
|
device_map=cls.device_map,
|
|
)
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
def test_quantized_model_conversion(self):
|
|
"""
|
|
Simple test that checks if the quantized model has been converted properly
|
|
"""
|
|
from aqlm import QuantizedLinear
|
|
|
|
from transformers.integrations import replace_with_aqlm_linear
|
|
|
|
model_id = "facebook/opt-350m"
|
|
config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
|
|
quantization_config = AqlmConfig()
|
|
|
|
with init_empty_weights():
|
|
model = OPTForCausalLM(config)
|
|
|
|
nb_linears = 0
|
|
for module in model.modules():
|
|
if isinstance(module, torch.nn.Linear):
|
|
nb_linears += 1
|
|
|
|
model, _ = replace_with_aqlm_linear(model, quantization_config=quantization_config)
|
|
nb_aqlm_linear = 0
|
|
for module in model.modules():
|
|
if isinstance(module, QuantizedLinear):
|
|
nb_aqlm_linear += 1
|
|
|
|
self.assertEqual(nb_linears, nb_aqlm_linear)
|
|
|
|
# Try with `linear_weights_not_to_quantize`
|
|
with init_empty_weights():
|
|
model = OPTForCausalLM(config)
|
|
|
|
model, _ = replace_with_aqlm_linear(
|
|
model, quantization_config=quantization_config, linear_weights_not_to_quantize=["lm_head.weight"]
|
|
)
|
|
nb_aqlm_linear = 0
|
|
for module in model.modules():
|
|
if isinstance(module, QuantizedLinear):
|
|
nb_aqlm_linear += 1
|
|
|
|
self.assertEqual(nb_linears - 1, nb_aqlm_linear)
|
|
|
|
def test_quantized_model(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly
|
|
"""
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
|
|
output = self.quantized_model.generate(**input_ids, max_new_tokens=40)
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|
|
|
|
def test_raise_if_non_quantized(self):
|
|
model_id = "facebook/opt-125m"
|
|
quantization_config = AqlmConfig(bits=4)
|
|
|
|
with self.assertRaises(ValueError):
|
|
_ = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)
|
|
|
|
def test_save_pretrained(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly after being saved and loaded
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
self.quantized_model.save_pretrained(tmpdirname)
|
|
model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map)
|
|
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
|
|
output = model.generate(**input_ids, max_new_tokens=40)
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|
|
|
|
@require_torch_multi_gpu
|
|
def test_quantized_model_multi_gpu(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly with multiple GPUs
|
|
"""
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
|
|
quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto")
|
|
|
|
self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1})
|
|
|
|
output = quantized_model.generate(**input_ids, max_new_tokens=40)
|
|
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|