transformers/tests/quantization/aqlm_integration/test_aqlm.py
Andrei Panferov 1ecf5f7c98
AQLM quantizer support (#28928)
* aqlm init

* calibration and dtypes

* docs

* Readme update

* is_aqlm_available

* Simpler link in docs

* Test TODO real reference

* init _import_structure fix

* AqlmConfig autodoc

* integration aqlm

* integrations in tests

* docstring fix

* legacy typing

* Less typings

* More kernels information

* Performance -> Accuracy

* correct tests

* remoced multi-gpu test

* Update docs/source/en/quantization.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Brought back multi-gpu tests

* Update src/transformers/integrations/aqlm.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/aqlm_integration/test_aqlm.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

---------

Co-authored-by: Andrei Panferov <blacksamorez@yandex-team.ru>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-02-14 09:25:41 +01:00

184 lines
6.6 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
from transformers import AqlmConfig, AutoConfig, AutoModelForCausalLM, AutoTokenizer, OPTForCausalLM
from transformers.testing_utils import (
require_accelerate,
require_aqlm,
require_torch_gpu,
require_torch_multi_gpu,
slow,
torch_device,
)
from transformers.utils import is_accelerate_available, is_torch_available
if is_torch_available():
import torch
if is_accelerate_available():
from accelerate import init_empty_weights
@require_torch_gpu
class AqlmConfigTest(unittest.TestCase):
def test_to_dict(self):
"""
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
"""
quantization_config = AqlmConfig()
config_to_dict = quantization_config.to_dict()
for key in config_to_dict:
self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
def test_from_dict(self):
"""
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
"""
dict = {
"in_group_size": 32,
"num_codebooks": 8,
"nbits_per_codebook": 8,
"linear_weights_not_to_quantize": ["lm_head.weight"],
}
quantization_config = AqlmConfig.from_dict(dict)
self.assertEqual(dict["in_group_size"], quantization_config.in_group_size)
self.assertEqual(dict["num_codebooks"], quantization_config.num_codebooks)
self.assertEqual(dict["nbits_per_codebook"], quantization_config.nbits_per_codebook)
self.assertEqual(dict["linear_weights_not_to_quantize"], quantization_config.linear_weights_not_to_quantize)
@slow
@require_torch_gpu
@require_aqlm
@require_accelerate
class AqlmTest(unittest.TestCase):
model_name = "BlackSamorez/Mixtral-8x7b-AQLM-2Bit-1x16-hf-test-dispatch"
input_text = "Hello my name is"
EXPECTED_OUTPUT = "Hello my name is Katie and I am a 20 year old student at the University of North Carolina at Chapel Hill. I am currently a sophomore and am majoring in Psychology. I am"
device_map = "cuda"
# called only once for all test in this class
@classmethod
def setUpClass(cls):
"""
Setup quantized model
"""
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.model_name,
device_map=cls.device_map,
)
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
gc.collect()
def test_quantized_model_conversion(self):
"""
Simple test that checks if the quantized model has been converted properly
"""
from aqlm import QuantizedLinear
from transformers.integrations import replace_with_aqlm_linear
model_id = "facebook/opt-350m"
config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
quantization_config = AqlmConfig()
with init_empty_weights():
model = OPTForCausalLM(config)
nb_linears = 0
for module in model.modules():
if isinstance(module, torch.nn.Linear):
nb_linears += 1
model, _ = replace_with_aqlm_linear(model, quantization_config=quantization_config)
nb_aqlm_linear = 0
for module in model.modules():
if isinstance(module, QuantizedLinear):
nb_aqlm_linear += 1
self.assertEqual(nb_linears, nb_aqlm_linear)
# Try with `linear_weights_not_to_quantize`
with init_empty_weights():
model = OPTForCausalLM(config)
model, _ = replace_with_aqlm_linear(
model, quantization_config=quantization_config, linear_weights_not_to_quantize=["lm_head.weight"]
)
nb_aqlm_linear = 0
for module in model.modules():
if isinstance(module, QuantizedLinear):
nb_aqlm_linear += 1
self.assertEqual(nb_linears - 1, nb_aqlm_linear)
def test_quantized_model(self):
"""
Simple test that checks if the quantized model is working properly
"""
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
output = self.quantized_model.generate(**input_ids, max_new_tokens=40)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
def test_raise_if_non_quantized(self):
model_id = "facebook/opt-125m"
quantization_config = AqlmConfig(bits=4)
with self.assertRaises(ValueError):
_ = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)
def test_save_pretrained(self):
"""
Simple test that checks if the quantized model is working properly after being saved and loaded
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map)
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
output = model.generate(**input_ids, max_new_tokens=40)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
@require_torch_multi_gpu
def test_quantized_model_multi_gpu(self):
"""
Simple test that checks if the quantized model is working properly with multiple GPUs
"""
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto")
self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1})
output = quantized_model.generate(**input_ids, max_new_tokens=40)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)